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SPlume phenomenology experiments conducted in 1990 uncovered the existence of plume speckle reflectance emanating from
the exhaust of a solid-propellant rocket motor due to the presence of metallic particulates in the plume. This impeded attempts,
that are dependent upon the speckle return of an actively illuminated target hardbody, to discern the plumelhardbody interface.
This thesis investigates the feasibility of employing the Doppler return phenomenon in discerning the plumelhardbody interface
and locating the hardbody center-of-mass. The potential of the Doppler phenomenon's utilization lies in tie fact that the Doppler
return frequency spectra of the plume and tie hardbody respectively possess distinct properties and are differentiable from
each other. Hence, these differences can be exploited in the attempt to discern the plume/hardbody interface. For this study,
two center-of-mass Kalman filters are developed to receive the Doppler return measurements: a one-state filter and two-state
Modified Maximum a Posteriori Multiple Model Adaptive filter. A sensitivity analysis is conducted wherein the performances
of the one-state filter and two-state filter are evaluated with variations in transmitted wavelength, signal-to-noise (SNR), and
probability-of-miss. Results show the center-of-mass filters are sensitive to Increases in probability-of-miss, where=s decreases
in SNR produced insignificant degradation in perfornmance. The two-state Modified MAP MMAF achieved the best perforniance.
and clearly has the potential to accomplish the task of locating arid tracking the hardbody ccnter-of-mass.
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Abstract

For thirteen years, the Air Force Institute of Technology (AFIT) has been engaged irt

studying the applicability of the Kalman filter to locate and track airborne targets precisely. A

majority of the research explored linear, extended (nonlinear) filters and multiple model adaptive

filter structures in conjunction with an enhanced correlator tracker to estimate the position and

velocity of the target exhaust plume. The tracking concept centers upon the use of a forward-

looking infrared sensor (FLIR) to detect the intensity centroid of the target plume. Raw FLIR data

is provided to an enhanced correlator algorithm that generates linear elevation and azimuth FLIR

image plane offsets as "measurements" for the Kalman filter. In comparison to conventional

correlation trackers, the AFIT Kalman filter tracker yields superior performance in both short and

long range tracking scenarios with target trajectories that range from benign to highly dynamic

maneuvers up to 20 g's. With the tracking problem of the exhaust plume resolved, recent AFIT

theses have shifted attention to tracking the missile hardbody and locating its center-of-mass.

Beginning in 1989, research efforts to locate the hardbody center-of-mass used a low-

energy laser to actively illuminate the hardbody. A low-energy scan would originate at the

estimated position of the target plume's intensity centroid, and continue along the target's

estimated velocity vector to intercept the hardbody. The hardbody's dimensions would be

apparent from the low-energy laser speckle return of the hardbody, upon which the location of the

center-of-mass can be derived. However, plume phenomenology experiments in 1990 uncovered

the existence of plume speckle reflectance emanating from the exhaust of a solid-propellant rocket

motor (due to the presence of metallic particulates) that made the plume/hardbody interface
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difficult to discern. In view of this shortcoming of the low-energy speckle return, the Phillips

Laboratory requested AFIT to explore the feasibility of using the Doppler phenomenon to locate

the hardbody,

The potential of the Doppler phenomenon's utilization in the AFIT tracking scenario lies

in the fact that the Doppler return frequency spectra of the plume and the hardbody respectively

possess distinct properties and are differentiable from each other. The plume and missile

hardbody have opposite velocity vectors which result in opposite Doppler shifts. In addition, the

frequency spectrum bandwidth of the plume-induced Doppler return has been observed to be

significantly broader than that of the hardbody-induced Doppler return spectrum, due to the

diverse velocity orientations of the numerous particulates in the plume. Hence, these differences

can be exploited in the attempt to discern the plume/hardbody interface.

This thesis investigates the feasibility of employing the Doppler return phenomenon in

discerning the plume/hardbody interface and locating the hardbody center-of-mass. To accomplish

this objective, a Doppler return model is developed that also incorporates a probability-of-miss

parameter that represents instances when the target aspect angle approaches an orientation that

results in no Doppler shift of either plume or hardbody, as well as representing bending of the

low-energy laser by atmospheric effects so that the hardbody is not actually intercepted. Doppler

return measurement noise variances are determined as a function of laser transmitted wavelength

and signal-to-noise ratio. The speckle return model is also modified to include the effects of the

plume speckle reflectance. For this study, two center-of-mass Kalman filters are developed to

receive the Doppler return measurements: a one-state filter and two-state Modified Maximum a

Posteriori Multiple Model Adaptive filter (MAP MMAF). The two-state Modified MAP MMAF

receives both speckle and Doppler return measurements and uses the speckle return measurement
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to compensate for occurrences of no Doppler shift measurement. A sensitivity analysis is

conducted wherein the performances of the one-state filter and two-state filter are evaluated with

variations in transmitted wavelength, signal-to-noise (SNR), and probability-of-miss. Results show

the center-of-mass filters are sensitive to increases in probability-of-miss, whereas decreases in

SNR produced insignificant degradation in performance. The two-state Modified MAP MMAF

achieves the best performance, and clearly has the potential to accomplish the task of locating and

tracking the hardbody center-of-mass.
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KALMAN FILTERING OF A REFLECTIVE TARGET USING FORWARD-

LOOKING INFRARED AND DOPPLER RETURN MEASUREMENTS

I. Introduction

The concept of a defensive posture capable of nullifying a ballistic missile attack has had

worldwide ramifications. One can point to the recent dynamic changes in the Soviet-US Arms

Control Treaty and progress in the Strategic Arms Reduction Talks as attributable to the US

government's committment to Strategic Defense Initiative (SDI) research [1]. During the Desert

Storm operation, the world watched the success of the ground-based Patriot ballistic wiissile

defense system under actual war conditions. Still, technology issues continue to challenge the

scientific and engineering community regarding, in particular, the space-based contingent of SDI.

Of paramount concern is locating and tracking the ballistic target in the presence of its

plume and atmospheric background, whether the mode of intercept is achieved by kinetic or direct

energy means. Only the autonomous and precise tracking of the target over long ranges, can

ensure that these space-based anti-ballistic weapon systems achieve the goals of SDI.

This research, in conjunction with prior studies, addresses the intricacies of locating and

discerning the missile hardbody in the presence of its plume. It probes the feasibility of

employing Doppler frequency spectrum returns as a means of discerning the missile

hardbody/plume interface. Conventional tracking techniques, using a laser illuminator and

measuring the speckle return, have shown that the plume reflectance of a solid-propellant rocket
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motor is of the same magnitude as that of the hardbody [2]. This condition causes an ambiguity

in the position of the hardbody with respect to the plume. At the plume/hardbody interface, a

unique Doppler function is expected and may, therefore, be used to define that interface precisely.

1.1 Background

For the past thirteen years, the Air Force Institute of Technology (AFIT) has been engaged

in the research and development of long and short range ballistic target trackers under the

sponsorship of the Phillips Laboratory (formerly the Air Force Weapons Laboratory/AWFL) at

Kirtland Air Force Base, New Mexico [5-7,10-12,14,21-25,27,29,32,33,35-37,40-43]. Central to

these trackers is a 300 x 500 pixel array Forward-Looking Infrared (FLIR) sensor which passively

detects the infrared radiation emitted by the nAssile plume. Each pixel in the array detects

infrared energy through an angle of 15 microradians in two orthogonal directions (azimuth and

elevations)[35]. The array utilizes an 8 x 8 pixel sub-array field-of-view (FO'v) as a window for

tracking purposes [33,35].

Information from the excited 8 x 8 FOV is provided to an enhaticed image correlator

algorithm that produces position offsets as pseudo-measurements to a linear Kalman filter. In the

Fourier domain, the enhanced correlator algorithm correlates the current raw FLIR data frame widt

a template that represents an estimate of the target plume's intensity function. Two linear po'sition

offsets, x, and yc, are created that yield maximum correlation of thd current data and the template.

The Kalman filter treats these offsets as measurements and computes optimum estimates of the

position offsets and furnishes these estimates to a pointing controller that centers the plume

centroid in the FOV. Since the high-energy laser is optically boresighted with the FUR FOV, the

laser continously points to the target's estimated position.
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Previous research concentrated upon tracking the plume centroid while the target exhibits

benign trajectories to harsh dynamic target manuevers up to 20 g's. However, the intended target

for the laser is the missile hardbody, which cannot be distinguished solely from information

provided by the FLIR measurements. Thus, the two most recent theses [5,6] have focused upon

!ocating and discerning the missile hardbody utilizing the speckle return of a low-energy iascr.

These returns are fed as additional inputs to the Kalman filter algorithm in order to estimate the

hardbody center-of-mass as well as the infrared target image centroid.

Prior to AFIT research into the Kalman filter algorithm, AWFL utilized a standard

correlation algorithm to perform the tracking function. This algorithm cross-correlates the FLIR

image with a previously sampled image to generate position offsets, assuming that a translation

in the image corresponds to a spatial translation of the target. The advantage of the correlation

algorithm is that it does not require a priori knowledge of the type of target and is therefore a

robust tracker. However, it does have several shortcomirigs.

First, the correlation algorithm inherently neglects any knowledge of the target type, shape,

and motion characteristics. This a priori information may be exploited to estimate the target

position adaptively and enhance tracker performance. Second, computation of the correlation

function and subsequent pointing of the tracker produces a finite time lag. Lastly, the correlation

tracker is unable to distinguish between true target motion and "apparent" target motion caused

by identifiable disturbances such as atmospheric jitter [27], distorted wavefronts of the inbound

IR energy, vibration/bending of the platform and optical system [12], and missile plume "pogo"

effects [35].
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These deficienc,.es of the correlation tracker have been resolved by incorporating Kalman

filtering methodology [5,6,8,10,11,12,14,27,29,32,33,35,.j6,37,40,41]. By developing accurate

models of the disturbinces mentioned above, the Kalman filter assigns the appropiate weight to

the FLI. data to yield the optimum estimate of the target's position. Futhermore, a priori

knowledge of the target type, shape, and dynamic characteristics are modelled and incorporated

in the Kalman filter algorithm. This target n -dl* is propagated forward in time to establish an

estimate of the target's future position for use in laser pointing and target tracking.

1.2 Summary of Previous AFIT Research

Begining in 1978, AFIT has been engaged in research investigating the use of Kalman

filtering techniques for ballistic missile and other airborne target tracking. As a result, there exist

numerous papers and theses devoted to this area of study. By far, the majority of this research

lies in sixteen previous theses accomplished by AFIT graduate students. As a stand-alone

document, each thesis contains an overview of previous theses. The overview presented by Roger

Evans [6] is noted for its completeness and is reproduced for this section.

Research in this area was initiated by Mercier [27] in 1978, who compared the extended

Kalman filter (EKF) performance to that of the AWFL correlation tracker under identical

conditions. An eight-state truth model was developed for simulation purposes, consisting of two

target position states and six atmospheric jitter states. The position states defined the target

location in each of two FLIR plane coordinate directions (azimuth and elevation), by accurately

portraying target trajectories in three-dimensional space and projecting onto the FLIR plane. The

atmospheric jitter was modeled by a third order shaping filter driven by white noise for each FLIR

plane axis, as provided by The Analytic Sciences Corporation (TASC) [17]; three. states defined
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the atmospheric distortion in each of the two FLIR plane coordinate directions. The Kalman filter

dynamics model consisted of four states: two states representing target position, and two

representing the atmospheric jitter (based on reduced order models, versus the six states of the

truth model). In both the truth model and filter dynamics model, the position states and

atmospheric jitter states were defined in each of the two FLIR plane coordinate directions. In the

filter, the position and jitter states were each modeled as a first-order, zero-mean, Gauss-Markov

process. The FLIR provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The

FLIR measurement noise due to background clutter effects and internal FLIR noises were modeled

in the filter as both temporally and spatially uncorrelated. The target was considered as a point

source of light (i.e., a long range target) having benign dynamics. The corresponding Airy disc

on the FLIR image plane was modeled as a bivariate Gaussian distribution with circular equal

intensity contours. The conventional correlation tracker and the extended Kalman filter were

compa: ed across three different signal-to-noise ratios (SNR), using a ten-run Monte Carlo analysis

to obtain the tracker error statistics. The results of the comparison are shown in Table 1.1 for a

Gaussian intensity function dispersion, a., equal to one pixel. (For a Gaussian intensity function

dispersion equal to one pixel, most of the useful information is contained in an area of about five

pixels square.)

Whrile the correlation tracker showed dramatic performance degradation as the SNR was

decreased, the Kalman filter showed only a minor change in its performance at the lowest SNR

tested. The extended Kalman filter was shown to be superior to the correlation tracker by an

order of magnitude in the root mean square (rms) tracking error, provided the models incorporated

into the filter were a valid depiction of the tracking scenario. This success motivated a follow-on

thesis to improve filter modeling and thereby to enhance the performance.
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Table 1.1 Kalman Filter and Correlation Tracker Statistics Comparison

Signal-to Correlation Tracker Extended Kalman Filter
Noise Ratio

Mean Error lo Mean Error I o

20 7.0 8.0 0.0 0.2

10 8.0 10.0 0.0 0.2

1 15.0 30.0 0.0 0.8

The research accomplished by Harnly and Jenson [10,211 investigated modeling

improvements in the filter and tested more dynamic target simulations. A comparison was made

between a new six-state filter and a new eight-state filter. The six-state filter dynamics target

model included the four previous states as well as two velocity states in the FLIR plane

coordinates (azimuth and elevation); the dynamics model of the eight-state filter included two

acceleration states in the FUR coordinates as well. The acceleration was modeled as Brownian

motion (BM) (d = w, where w is a zero-mean white Gaussian noise). The filter was also designed

to perform residual monitoring, which allowed the filter to react adaptively, and maintain track.

by quickly increasing the covariance values in the filter-computed P matrix, which in turn

increased the filter gain K. A recommendation was also made to examine increasing the FOV

during target jinking maneuvers to avoid losing lock. The constant-intensity contours of the target

were modeled as elliptical patterns as opposed to the earlier circular equal .intensity contours in

order to simulate closer range targets, The major axis of the target FLIR image was aligned with

the estimated velocity vector. A number of different target trajectories were tested against the six-
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state and eight-state filters, and while the six-state filter performed well during moderate jinking

maneuvers, tht. eight-state filter performed better while tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were considered by

Flynn [8]. He used a Brownian motion (BM) acceleration target dynamics model [10] and a

constant turn-rate (CTR) dynamics model. The CTR model portrayed the target behavior by

modeling the acceleration as that associated with CTR dynamics. Concatenating such constant

turn-rate segments together provides an accurate portrayal of manned target evasive maneuver

trajectories. Additionally, a Bayesian multiple model adaptive filter (MMAF) was developed

using the BM dynamics model. A MMAF (Figure 1.1) consists of a bank of K independent

Kalman filters, each of which is tuned to a specified target dynamics characteristic or parameter

(a,, a2,...a. in Figure 1.1). The time histories of the residuals (rk (i) in Figure 1.1) of these K

Kalnan filters are processed to compute the conditional probability (p& (I) in Figure 1.1) that each

discrete parameter value is "correct." The residuals of the Kalman filter, based upon the "correct'

model, are expected to be consistently smaller (relative to the filter's internally computed residual

rms values) than the residuals of the other mismatched filters (i.e., based upon "incorrect" models)

[8]. If that is true, then the MMAF algorithm appropiately weights that particular Kalman filter

more heavily than the other Kalman filters. These values are used as weighting coefficients to

produce a probability-weighted average of the elemental filter outputs [8]. Therefore, the state

estimate ( (t1) in Figure 1.1) is actually the probablistically weighted average of the state

estimates generated by each of the K separate Kalman filters ("k (1) in Figure 1.1). Testing of the

three filter models was conducted for three different flight trajectories which included 2-g, 10-g,

and 20-g pull-up maneuvers. Unfortunately, the residuals of the K Kalman filter did not differ

from each other enough to perform the weighting function properly, and MMAF did not track
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Figure 1.1 Multiple Model Adaptive Filter

well. The BM and CTR filters both performed equally well at 2-g's. The CTR filter was found

to be substantially better than the BM filter for 10-g and 20-g pullup manuevers.

Mercier had assumed that the filter had a priori knowledge of the target shape and

intensity profile. Singletery [37] improved the realism in the target model by developing a model

in the FLIR plane which included multiple hot spots. However, he returned to the case of very

benign targets. The filter did not assume a priori knowledge of the target size, shape, or location.

A new data processing scheme (Figure 1.2) was developed which included the use of the Fast

Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFFT), each of which can be

produced with a lens if optical processing is used. The plan included two data paths for
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processing the intensity measurements z09. On the first path, the 8 x 8 array of intensity

measurements from the FLIR are arranged into a 64-dimensional measurement vector. This

measurement vector is applied to the extended Kalman filter (as in prior work). The purpose of

the second path is to provide centered target shape functions to be time-averaged with previous

centered shape functions in order to generate the estimated target template (h in Figure 1.2) and

partial derivatives of it with respect to the states (H in Figure 1.2), as needed by the extended

Kalman filter. This invokes the shifting theorem of Fourier transforms. The shift theorem states

that a translation of an image in the spatial domain results in a linear phase shift in the spatial

frequency domain. To negate the translational effects of an uncentered target image in the spatial

X X= d(,'i)+•a(•)

Y =Y d(i)+ Y(tz)

8 x 8 Pad F Negating Exponential

SBackward

Difference

Sr Results of Measurement Update
Z (x,) ,-), F

H x (I, ),• t F -- I onrwa lrd

Results of M r (,etUp)

Propagation Y --=Yd

Figure 1.2 Data Processing Scheme using FFT and IFFY
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domain, the Fourier transform of the translated image is multiplied by the complex conjugate of

the desired linear phase shift [37]. Ihe extended Kalman filter model, in path one, which was

developed by Mercier [27], was used to provide the optimal estimate of the linear translation. The

filter state estimates are used to develop the complex conjugate of the linear phase shift and

provide the centered measurement functions. Before the IF-T is taken, the resulting pattern is

exponentially smoothed to yield an approximation to averaging the result with previously centered

frames of data, to minimize the effect of measurement noise. The result is a centered pattern with

noise effects substantially reduced. Following the application of the IFFT to form the nonlinear

function of intensity measurements (Ih of Figure 3.2), the spatial derivative is used to determine

the linearized function of intensity meusurements (H of Figure 1.2). These are both used by the

Kalman filter in processing the next sampled measurement [37]. The results of this data

processing scheme were inconclusive due to filter divergence problems. Despite the problems

encountered with the filter, the concept was considered to have filter perlfe mance potential.

Rogers [36] continued the work of developing a Kalman filter tracker which could handle

multiple-hotspots with no a priori information as to the size, shape, intensity, or location of the

target. However, he continued the application to benign target motion, as Singletary [37] had

done before, in order to concentrate on the feasibility of adaptively identifying the target shape.

Using digital signal processing on the FLIR data (as described above) to identify the target shape,

the filter uses the information to estimate target offset from the center of the FOV, which in turn

drives a controller to center the image in the FLIR plane. Algorithm improvements included

replacing the Forward-Backward Difference block of Figure 1.2 with a partial differentiation

operation accomplished as a simple multiplication before the IFFT block.
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Rogers also considered an alternative design that used the target image h (as generated

in Figure 1.2) as a template for an enhanced coirelator, as shown in Figure 1.3. The position

offsets produced as outputs from the correlator were then used as "pseudo-measurement" inputs

to a linear Kalman filter. The improved correlation algorithm of Figure 1.3 compares the F'LIR

image to an estimated template instead of the previous image, as is done in the standard correlator.

This tracking concept is thus a hybrid of correlation tracking and Kalman filtering [36]. Its

performance was compared to the results of earlier extended Kalman filters that used the raw

FLIR data as measurements [101, Although the extended Kalman filter performed well without

a priori knowledge of the shape and location of the intensity centroid, the improved correlator

Template Generation
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Figure 1.3 Linear Kalman Filter/Enhanced Correlator Algorithm
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used with the linear Kalman filtr outperformed the extended Kalman filter while providing

reduced computational loading.

Mimner [29] and Kozemchak [1 tested an extended Kalman filter and the linear Kalman

filter/enhanced correlation algorithm against close range, highly maneuverable targets. The linear

four-state filter used in the previous research was replaced by an eight-state filter consisting of

position, velocity, acceleration, and atmospheric jitter states in the two coordinates of the FLIR

plane (azimuth and elevation). Two target dynamics models were also developed. The target was

first modeled as a first-order Gauss-Markov acceleration process, and secondly with a constant

turn-rate model, Both filters porformed well without a priori knowledge of the target size, shape,

and location, using the FFT data processing methodI for identifying the target shape function

[36,37]. However, at maneuvers approaching 5-g's, the filter performance degraded considerably.

It was noted that the tracking was substantially better when the Kalman filter dynamics model

closely matched the target trajectory.

The Bayesian MMAF techlique [8] was reinvestigated by Suizu [401 bsed on the

recommendations of the previous work. The MMAF (Figure 1.1) consisted of two elemental

Kalman filters. One elemental filter was tuned for benign target maneuvers and obtained sampled

measurement information from an 8 x 8 pixel FOV in the FLIR plane. A second filter was tuned

for dynamic maneuvers and obtained sampled measurement information from a 24 x 24 pixel FOV

in the FLIR plane. The technique allowed the MMAF to maintain track on benign target

trajectories up to 20-g's at a distance of 20 kilometers. The MMAF was configured for both the

linear Kalman filter/enhanced coirelation algorithm [36] and the extended Kalman filter. Both

filtering schemes exhibited comparable rms tracking performance results, with the correlator/linear
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Kalman filter having smaller mean errors and larger standard deviations than the extended Kalman

filter, as seen in earlier work of Rogers [361. The state rms tracking error was on the order of 0.2

to 0.4 pixels ( one pixel being equivalent to 20 prad on a side).

The potential of the MMAF technique with the FFrI processing method was continued by

Loving [14]. A third filter was added to the bank of filters, tuned for intermediate target

maneuvers and obtaining sampled meamurement information from the 8 x 8 FOV in the FUR

plane. This MMAF showed significant performance advantages over all the previous filters.

Additionally, a Maximum A Posterori (MAP) algorithm was developed and compared with the

Bayesian MMAF. The MAP algorithm differs from the Bayesian MMAF in that the MAP

algorithm uses the residuals of the separate filters to select the one filter with the highest

probabilistic validity, while the Bayesian MMAF uses a probability-weighted average of all filters

ir. the bank. The Bayesian and the MAP techniques produced similiar results and delivered

performance that surpassed previous filters.

Netzer [32] expanded the study of the MMAF algorithm. He investigated a steady-state

bias error that resulted when tracking a target exhibiting a high-g constant turn-rate maneuver.

A major cause of this bias is the MMAF mistuning the x-ditection (azimuth) while maintaining

lock on the highly dynamic y-direction (elevation) transient. This motivates the concept of

individual x- and y-channel target-motion filters in the MMAF, which would allow adaptive

filtering for maneuvers in the x- and y-channels independently [32]. The size of the FOV was also

investigated. When a target came to within five kilometers of the FUR platform, the 8 x 8 FOV

was saturated with the intensity centroid image, resulting in a loss of track. This analysis

motivates a changing FOV to maintain lock for targets and also warrants the possibility of adding

1-13



another Kalman filter which is tuned for extremely harsh manuevers at close ranges. A study of

the aspect ratio (AR) associated with target's intensity centroid was also accomplished to identify

filter tracking characteristics for various target image functions [32]. This study used "greyscale

plots" to support the analysis. A greyscale plot is a pictorial display of an image in which shading

of the image is used to indicate similar parameters. In this case, the plot indicates regions of

varying levels of the intensity of the filter-reconstructed target image in a 24 x 24 pixel FOV.

Four different AR values of 0.2, 0.5, 5, and 10 were compared to the nominal AR of 1. The

results showed that tracking was slightly impaired for images with AR as high as 5. The reduced

performance is primarily along the semi-major axis of an elliptically modeled intensity centroid.

Additionally, a target-decoy experiment was conducted in which a high density decoy was also

located in the FOV with the target. Since the decoy was modeled with different dynamics not

given to the filter, it was hoped that the filter would reject the decoy. This was not the case; the

filter locked onto the hotter decoy image. This indicates that the inability of the current filter

algorithm to reject this type of bright hotspot requires isolating the target image in a small FOV

or some other concept to ensure tracking of the desired target.

The previous research efforts [14,32,40] used Gauss-Markov acceleration models in the

development of the MMAF. Tobin [41] implemented the CTR dynamics model in another

MMAF. His results showed that the Gauss-Markov MMAF exhibited smaller bias errors while

the CTR MMAF gave smaller steady state standard deviation errors; both filters had comparable

rms errors. Motivated by earlier research [32], he also developed an 8 x 24 pixel FOV for both

the x.. and y-directions of the FLIR image plane to be used with filters desigued to anticipate harsh

target accelerations in a specific direction (along which the longer side of the FOV would be

oriented). The results showed that the filter maintained lock on a target during a highly dynamic
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maneuver in the y-direction while maintaining substantially better steady state bias performance

in the benign x-direction.

Leeney [12] expanded the previous used Gauss-Markov truth model by incorporating

bending vibrational states. The elemental filters in the MMAF were not modeled with this

information through explicit state variables, but performed well up to a 10-g maneuver. A

performance investigation was also conducted as to the effects of increasing the measurement

update rate from the previously used 30 Hz to 50 Hz. The sampling rate of 50 Hz showed a

minor performance improvement, but also increased the computational loading because of the

higher rate. A preliminary study was also done on replacing the 8 x 24 pixel FOV in the x- and

y-directions [41] on the FLIR plane with a single 8 x 24 pixel FOV, which is also known as the

rotating rectangular-field-of-view (RRFOV), The idea was to align the long side of the rectangular

FOV with an estimate of the acceleration vector. The higher precision velocity estimate was

actually used instead of the noiser acceleration estimate, and it was assumed that the acceleration

direction would be essentially ordiogonal to the velocity vc-ýýtor direction. Additionally, the five

elemental Kalman filters in the MMAF bank would be reduced to four by using this FOV rotation

scheme. The results were not conclusive, but the insight provided motivation to continue the

swudy.

The RRFOV research was continued by Norton [33]. He discovered that the appropiate

choice of the filter dynamics driving noise strength Q dictated the filter's response to a high-g

jinking maneuver, and that the size of the FOV could be reduced to an 8 x 8 pixel rotating FOV,

also known as the rotating square field of view (RSFOV). His investigation showed that a non-

rotating square FOV could provide good pe.formance, but that the dynamics noise strength Q
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matrix value must be large in the elements corresponding to the direction of the acceleration

vector, A mathematical matrix transformation was developed which rotated the Q matrix to keep

the larger values aligned with the acceleration vector. A study of both the rotating FOV and

rotating the Q matrix provided advantages and disadvantages for each method. Both methods are

affected by the tuning parameters used to represent the rms level of acceleration of the target,

which also contributes to error biases. The rotating FOV improves the x-direction (azimuth)

estimation for dominant y-direction (elevation) dynamics from previous MMAF algorithms, but

does not improve y-direction estimation for dominant y-direction dynamics. Rotating the Q matrix

adaptively improves estimation of both x- and y-directions and improves the jink maneuver error

transients, but is dependent on the orthogonality of the velocity and acceleration vectors and

proper initial tuning parameters. The conciusion was that both methods employed together

provide the ability to adjust filter characteristics to differentiate between harsh and benign

dynamics in any orientation of target acceleration (rotating Q) while at the same time maintaining

appropiate view resolution in the directions of both benign and harsh dynamics (rotating FOV).

Therefore, the combination allows for tracking highly maneuvering targets without sacrificing the

resolution rovided by the smaller RSFOV [33].

The research up to this point was primarily directed towards tracking aircraft and missiles

from a ground-based FLIR plane. Rizzo [35] initiated research on a space-based platform which

could track targets using the same filtering techniques. Since the linear Kalman filter/enhanced

correlator algorithm had proven to be computationally more efficient than the extended Kalman

filter, it was chosen as the system filter. The plume "pogo" (oscillation) phenomenon of a missile

in the boost phase of flight was modeled in the truth model and in one of two filters used for the

analysis. The pogo was modeled as a second-order Gauss-Markov process, and applied in the
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direction of the missile velocity vector. The plan was to go adaptive on the pogo stats using the

MMAF algorithm, treating the pogo amplitude and oscillation frequency as uncertain parameters.

Although the elemental filters were developed, no MMAF performance was accomplished, due

to elemental filter performance difficulties.

Three rotation schemes were also developed and tested. The first scheme, referred to as

the rotating field-of-view (RFOV), involved using the 8 x 8 FOV filter and aligning a single axis

of the FLUR plane with the estimated velocity vector of the target; therefore one of the coordinate

axes of the FOV would stay aligned with the oscillation of the plume. The second scheme,

referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8 FOV with the diagonal

aligned with the oscillation of the plume. The motivation behind this scheme is that the 8 x 8

FOV is oriented in such a fashion will be able to "sec." more of the target's intensity image, thus

enabling the sensor to obtain more measurement information [351. The third tracking scheme was

the rotating rectangular field-of-view (RRFOV) algorithm developed from previous research

[12,41]. The RFOV, DRFOV, and the RRFOV algorithms [32] were tested along with the non-

rotating field-of-view (NRFOV) filter. The NRFOV is the standard tracker used in previous

studies [12,32,41]. The DRFOV scheme was shown to be superior to the other three tested for

providing enhanced tracking of a missile hardbody whose plume is undergoing a pogo

phenomenon.

The eight-state filter (without pogo states; two target position states, two target velocity

states, two target acceleration states, and two atmospheric jitter states) and the ten-state filter (with

pogo states) surfaced a problem that may have gone unnoticed in previous work. Following

tuning of the filters with the twelve-szate truth model, it was discovered that the eight-state filter
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outperformed th:, ten-state filter. An investigation into the cause of the irregularity revealed that

there was a serious observabiity problem in the both filters. The affected states were velocity and

acceleration. A recommendation was made to remove the acceleration states in the ten-state filter,

and to model the velocity states in this new eight-state filter as a first-order Gauss-Markov

process.

Eden [5] resumed the research of the space-based FLIR platform. The scope of the

tracking problem was expanded by requiring the filter to track the hardbody of the missile rather

than just the intensity centroid of the FLIR. Since the FLIR could not supply the needed

information about the hardbody location relative to the image center of intensity to the Kalman

filter, another measurement source was developed. Under the advisement of the Phillips

Laboratory, the new measurement source was identified as a low-energy laser. The laser actively

acquires measurement data while the FLIR obtains its measurement information passively. This

scheme calls for a six-state Kalman filter (consisting of two position states, two velocity states,

and two atmospheric jitter states) to provide a velocity vector estimate for the target plume. The

low-e.iergy laser is scanned along this vector from the target plume image intensity center to

intercept the hardbody. The hardbody is modeled as a rectangle with binary reflectivity. When

the low-energy laser (modeled with a beam width of 2.'35 meters at the target) illuminates the

hardbody, the reflection is received by a low-energy laser sensor on the platform. This speckle

information is provided to a single-state Kalman filter which estimates the distance between the

center of mass and the center of intensity along the velocity vector direction. The center of mass

is deftied as the midpoint of the scan across the hardbody if the centerline of the laser beam

crosses the aft end of the missile and the top (nose) of the hardbody, or if the laser beam crosses

the aft end and one of the sides of the hardbody. The results of the laser scan show that the
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interception of the laser with the hardbody occurrs only 10-20% of the time. This low ratio of

hitting the target is attributed to the six-state filter being tuned for estimating only the intensity

centroid location on the FUR plane and not for precise velocity estimation. Since the velocity

vector must be accurately estimated for active illumination of the target to be a viable concept,

it was recommended that the filter also be tuned for accurate velocity estimates.

Tracking the center-of-mass of a missile hardbody using FLIR measurements and low-

energy laser illumination was further investigated by Evans [6]. He surmised that the tracking

error, represented by a straight line between the estimated target center-of-mass and the true

center-of-mass [5], could provide more insight if it were separated into the x- and y- (azimuth and

elevation) components, or into along-track and across-track (2-d perpendicular axes of the

hardbody) components. Evans proposed the latter method would provide better informaton

relative to the principle axes directions of the error phenomenon. An eight-state filter was

developed by augmenting Eden's six-state filter [5] with two additional bias states used to estimate

the hardbody center-of-mass [6]. A comparison between the eight-state filter and Eden's one-state

filter used in conjunction with the six-state FLIR filter, resulted in negligible difference in

performance. Evans' analysis of the eight-state filter's error statistics showed that the tracking

error is much greater in the along-track direction than in the across-track direction, and thus the

separate one-state filter and six-state FUR filter performed as well as the eight-state filter.

Aside from investigating the tracking error statistics, Evans enhanced Eden's 2-d hardbody

model (which treated reflectivity as a binary on/off function) with a 3-d hardbody reflectivity

model to provide increased realism in the simulation. Two reflectivity functions, cross-sectional

and longitundinal, were defined based upon empirical data obtained from a radar return off a 20
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x 249 inch cylinder with hemispherical endcaps, rotatad longitundinally in the plane of the radar

source [7]. As shown in Figure 14, the cross-sectional and longitundinal reflectivity functions

were incorporated into Eden's rectangular hardbody model as 29 discrete weighted line segments

along the longitudinal axis of the hardbody.

Evans also found that the sensitivity level of the low-energy sensor is a factor in

determining the reflectivity received at the sensor [61. The sensitivity level represents a threshold

below which the reflected return is indistinguishable from sensor noise. A sensitivity factor, p,

is incorporated in the simulation to define the appropriate sensitivity level required to detect a

hardbody's return as well as represent the physical limitations of the sensor.

Reflectivity Function Magnitude
Values vs. Displacement from
Hardbody Centerline
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Figure 1.4 Discrete Implementation of Cross-Sectional Reflectivity Function

1-20



Performance data collection from the eight-state filter and one-state/six-state filter

combination hinged upon the successful illumination of the hardbody by the low-energy laser.

Evans was faced with a low target intercept rate (10% - 20%), which inhibited any useful error

analysis of the center-of-mass filters. Realizing this, Evans generated an ad hoc technique of

offsetting the low-energy laser scan relative to the FLIR estimated velocity vector and "sweeping"

the scan across the hardbody, thus providing constant hardbody illumination information.

However, the "sweep" is not an optimal tool and should only be used to test the center-of-mass

filters in the simulation [6]. Both the 3-d reflectivity hardbody model and laser sweep were

employed to evaluate the performance of the eight-state filter and one-state/six-state filter

combination center-of-mass estimators.

1.3 Thesis Objectives

The vast amount of previous research is evidence of the complexity of the tracking

problem which grows more sophisticated with each thesis. As the progression of research shows,

the development of a tracking algorithm, employing Kalman filtering techniques, has evolved from

passively tracking the missile plume using infrared measurements to actively locating and tracking

the missile hardbody with the aid of information available from laser speckle returns. The prior

works of Eden and Evans [5,6] have confirmed the usefulness of laser speckle returns in

discerning the hardbody from the missile plume. Unfortunately, the plume physical characteristics

affect the degree to which the missile hardbody/plume speckle returns may be precisely defined

[2]. Experiments have shown that the laser speckle return of a solid-propellant rocket motor is

of the same magnitude as that of the hardbody, as a result of the metallic particles present in this

type of propellant [2]. Moveover, this causes a non-negligible bias (25 - 30 meters, occurring at
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least 90% of the time) in the estimate of the location of the missile hardbody center-of-mass that

was not reflected in the previous analysis [61, and this should be properly incorporated into the

current performance analysis. However, it has been observed that the Doppler return of the

plume, utilizing a pulsed coherent laser, exhibited both unique frequency shift and broadening

attributes which may be strongly distinguishable from that of a hardbody [2]. Thus, the primary

focus of this thesis is to investigate the feasibility of employing the Doppler phenomenon to

discern the missile hardbody from its plume. The specific objectives of this endeavor are outlined

below.

1.3.1 Dopplei" Phenomenon Modeling. Eden and Evans have established the methodology

of incorporating hardbody center-of-mass estimates ipto the linear Kalman filter/correlator

algorithm. The six-state filter (with two position states, two velocity states, and two atmospheric

states) augmented with the one-state filter that estimates the distance between the plume centroid

and the hardbody center-of-mass, performed well as long as hardbody measurements (i.e., Doppler

return for the current research) to the one-state filter are consistently provided. This filter

structure shall be used for this thesis.

For this preliminary investigation into the Doppler phenomenon, a modeling of the

physical processes of transmitting the pulsed coherent laser, or sensing the Doppler return shall

not be attempted. Instead, this effort concentrates upon specifying the form of measurement data

presented to the Kalman filter from these processes.

The Doppler return can be described by two characteristics: the magnitude of the

frequency shift, and the spread of the return spectrum. The direction of the hardbody's velocity

is presumed to be in the opposite direction of the plume's velocity [26]. Hence, the plume and

1-22



hardbody-induced Doppler return are expected to exhibit contrasting frequency shifts. The

respective spectrum spread of the hardbody's and plume's Doppler returns shall be seen to be

distinguishable from each other due to differences in mass density and particle velocities. In

essence, the plume will exhibit a broader spectrum spread as compared to the hardbody. On the

basis of these two factors, the Doppler return of the hardbody can be easily discriminated from

the Doppler return of the plume.

The angular resolution, expressed in tracking angle rms errors (a function of wavelength

and signal-to-noise ratio - to be developed in Chapter IV), is used to define the noise inherent in

the measurements [16,26]. Furthermore, a probability-of-miss is incorporated to account for the

probability of no detected plume/hardbody interface due to: bending of the laser path (so that

actual scan doesn't intersect the hardbody even though the intended scan does); and cases where

the Doppler receiver cannot discern the presence of two weparate returns from the hardbody and

the plume (i.e., both plume and hardbody velocities are normal to the sensor plane, resulting in

no Doppler shift).

Eden's binary rectangular hardbody model is utilized from the onset. Eventually, the

hardbody relectivity model developed by Evans will also be modified to exhibit the appropiate

Dopper return properties. For both hardbody models, the laser sweep routine developed by Evans

is employed. Chapter IV presents the basic pertinent aspects of the Doppler phenomenon and

discusses the Doppler measurement model.

1.3.2 Alternative Scan Techniques. Alternative scan techniques to detect the hardbody

are pursued as a secondary objective. The present sweep method is primarily an evaluation tool

for the one-state, hardbody center-of-mass filter. Although effective, the sweep action is
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admittedly not efficient, since it requires extra computer frame time. (The sweep is performed

at each update). In addition, future research involving active illumination may address more

dynamic target trajectories, jinking maneuvers, multiple hotspots, and decoy identification. For

these reasons, the scan time must be minimal.

Detection techniques considered include sinusoidal and conical scan patterns. Once the

target is detected, it can be actively followed by the laser radar in a special tracking mode where

the hardbody is continuously illuminated. The method of scanning and tracking must be governed

by practical concerns, such as the power availabilty to the qcanft.acking device and choice of

appropiate wavetngth considerations.

1.3.3 Performance Evaluation. With the Doppler phenomenon modeled as a form of

measurement data, the augmented six-state filter's [5,6] performance is evaluated against the truth

model (composed of two target states - the actual result of accurate 3-d trajectory simulation and

projection onto the FLIR plane, six atmospheric jitter states, four vibration states, and two pogo

states). Truth model speckle return measurements to the one-state offset filter is modified to

exhibit the hardbody bias that appears with solid propellant rocket motors [2,31. The results are

compared to the previous findings of Evan's [6] research. Initial testing, with the laser sweep

technique and the binary rectangular hardbody model, is conducted without the pogo and vibration

states. Further evaluation includes permutations of these disturbances "switched on and off' in

the truth model. In addition, sensitivity analyses of specific Doppler parameters, such as laser

wavelength, angular resolution, signal-to-noise ratio, and probability-of-miss, are conducted.

The combination of Doppler and speckle measurements may enhance center-of-mass

estimates. This configuration is explored and evaluated in the same fashion outlined above.
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1.4 Thesis Overview

This chapter described the AFIT-developed tracking system that employs a Kalman filter,

a passive FLIR sensor, and active illumination of the hardbody. A review of the prior research

was provided. Chapter II gives a mathematical summary of the linear Kalman filter and relates

it to the Kalman filter/correlator algorithm and the Multiple Model Adaptive Algorithm (MMAF).

Chapter III describes the Doppler phenomenon aspects that are relevant to the control viewpoint

of this thesis and also provides a brief technical description of the alternative detection techniques

considered for this study. The AFIT tra-king scenario is presented in Chapter IV. Chapters V

and VI discuss the truth model and filter modcls, respectively. Chapter ViI provides the

performancc analysis, and Chapter VIII presents the final conclusions and recommendations for

further study.
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II. The Kalman Filter Algorithm

2.1 Introduction

The process of estimating the target positioa, velocity, plume/hardbody interface, and other

variables of interest is accomplished by the Kalman filter. The Kalman filter accounts for the

uncertainties associated with the tracking system parameters and external environment, and

provides an optimal ,,olution under the basic assumptions that the system is linear (or linearized)

and is driven by white Gaussian noise. By optimally combining measurements, dynamic

characteristics, and a priori knowledge of the statistical properties of the system and measuring

devices, the Kalman filter produces optimal state estimates conditioned on the history of

measurements received. The a priori statistics ol the mean and covariance provided to .he filter

as initial state conditions are defined by:

E{x(to)) - Re (2-1)

E{[X(to) - ± [Xlto) - •o]} = P, (2-2)

where the notation (^) indicates an estimated value, and Ef I is the expectatioii, or ensemble

average, of the possible outcomes. The Kalman filter receives measurements at a prescribed

sample rate and pirpagates the state condit.ioned upon the measurement time history Z(t,), given

as:
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z(t) -- (2-3)

[ztti)

where z(tj) is the measurement data available at sample time (tj). Then the conditional mean and

covariance of the state variables are given by:

=(tl) -- F x(tj) I Z(t,) = Zt, (2-4)

P(tl-) = E{[x(tl) - f(ti)I [x(ti) - (t,)] I Z(t) = Z (2-5)

where Z, is a specific realization (observed set of values) of the meosurerrment history Z(t4).

For this thesis, the linear Kalman filter is employed to serve two independeat finctions:

the estimation of the target plume intensity centroid's position and velocity (performed by the six-

state FLIR filter), and the estimation of the hardbody center-of-mass. Offset azimuth and

elevation "pseudo..measurements" for the linear FLIR filter are produced from an enhanced

correlator algorithm that compares the FUR image to an optically processed template [36]. Two

different configurations of the center-of-mass estimators (a one-state and a two-state Modified

Maximum A Posteriori, or MAP, Multiple Model Adaptive Filter) operate autonomously from the

FLIR filter.

A benign target trajectory is used to obtain an initial "look" into the ability of the Doppler

phenomenon to define the plume/hardbody interface. Explicit knowledge of where the

plume/hardbody interface occurs will allow for locating and tracking the hardbody center-of-mass.
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As will be seen in Chapter V, the dynamics associated with the Doppler returns permit the use

of a linear Kalman filter.

The following sections present the basic mathematical forms of the linear Kalman

filter and the Multiple Model Adaptive Filter (MMAF) algorithms. Due to the benign target

dynamics and the preliminary nature of this research, the filter development is constrained to the

linear Kalman filter. Howeveir, this linear FLUR Kalman filter, which receives the offset "pseudo-

measurements" from the enhanced correlator, is shown to be an element in the MMAF structure

developed in previous AFIT research [12,14,33,40,41]. Thus, the MMAF is presented to offer an

encompassing perspective of the AFIT adaptive tracking system, although this thesis doe,; not

explicitly develop such an MMAF algorithm. The interested reader is referred to Mayleck's

Stochastic Models, Estimation, and Control, Vol. I and Vol. 2, for a rigorous developmen! of the

Kalman Filter tieory and MMAF algorithm.

2.2 Linear Kalman Filter

Prior to implementing the Kalman filter a mathematical model of the system dynamics

must be developed and measurements must be available. A system is generally modeled with a

set of linear state differential equations of the form:

1(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2-6)

where

F(t) = homogeneous state dynamics matrix

x(t) = vector of states of interest

B(t) = control input matrix

u(t) = determinictic control input vector
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G(t) -. drivirg noise input matrix

w(t) white Gaussian driving noise vector

Th3 mean of the white Gaussian driving noise vector is:

E{w(t)) = 0 (2-7)

and the noise strength is Q(t):

Efw(t)w(t + -') =- Q(t)6(t) (2-8)

The equivalent discrete-time system model of Equation (2-6) is needed to implement the

algorithm on a digital computer. The general form of the discrete-time state space form (denoted

by the d subscript) of that model is given by:

x(tiMj) = X(tQ,,t,)x(t•) + Bd(tO)u(t1) + wd(t 1) (2-9)

where

D(tj+j,tj) -= the n x n system state transition. matrix that satisfies the

differential equation and initial condition:

d[c1(t,to)] (
dt - QDtQ(

and where

x(t4) = discrete-time vector of states of interest

Bd (t,) = discrete-time control input matrix

u(tj) = discrete-time deterministic control input vector

wd (t1) = discrete-time independent, white Gaussian noise process

with mean and covariance statistics defined as:
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!Efw(t=)) = 0 (2-12)

E(w (tt)wf (tj )} -_ { Q (t,) t, (2-13)

with

Qd(td) _ 4•(t 1 ,1 )G~ c)Q ( 'c)G r( . 1t ,.)dt (2-14)

The Kalman filter incorporates measurement information from external measuring devices

to improve its estimate of a desired state. The discrete-time (sampled data) measurement model

is of the form:

z(tU) -- H(tj)x(t1) + v(t) (2-15)

where

z(t1) n m-dimensional measurement vector at sample time t,

H(t1 ) = state observation matrix

x(t0) = vector of states of interest

v(t4) = white Gaussian measurement noise

The discrete white Gaussian measurement noise v is independent of both x(to) and w for all time,

and has a mcan and covariance, R, given by:

Efv(t1 )} = 0 (2-.ý6)

Efv(t,)v r(tA) = R(tL) tt 2 (2-17)
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The Kalman filter propagates the state conditional mean and its covariance from the

instant in time immediately following the most recent measurement update, t,+, to the instant in

time immediately preceding the next measurement update, t,,- by numerical integration of the

following equations:

.ioltt) -- F(t)w(lti) (2-18)

P(tlt•) = F(t)P(tlt,) + P(tlt,)FQ(t) + G(t)Q(t)Gr(t) (2-19)

where the notation X^ (t/t0) denotes optimal estimates of x at time t, conditioned on measurements

through time t1, and with initial conditions:

•(Ott) -- 1(t") (2-20)

P(t, ltl) -- Pot.) (2-21)

where X (t,+) and P(t,+) are the results of the previous measurement update cycle. At time to, Axo

and Po from Equations (2-1) and (2-2) are used to initialize the first propagation.

That update cycle when a measurement becomes available at time t, is based on the

following update equations:

K(t,) = P(tQ[)Hn(t,)[H(t,)P(t[ )H (t,) + R(t,)]-1 (2-22)

I(±tQ) - f(ti[) + K(tQ)[Z(t1) - H(to)'t[-)] (223)

P(t1-) - P(ti') - K(i,)H(t1)P(ti-) (2-24)

where K(t) is the time-varying Kalman filter gain matrix that assigns "weights" to the new
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information (consisting of the difference between the actual measurement and the filter's estimate

of the measurement, H(td)(t,), as seen in Equation (2-23)) based on known measurement noise

statistics and filter-computed covariances.

2.3 Multiple Model Adaptive algorithm

The optimality of the state estimator is dependent upon complete, knowledge of the

parameters that define the best model for system dynamics, output relations, and statistical

description of uncertainties [18]. For Kalman filter tracking applications, maximum performance

is achieved when the parameters of the filter dynamics model match the parameters of the target

being tracked. Often, the parameters are known only with some uncertainty and may exhibit time-

varying characteristics (such as in the case of maneuvering targets with changing acceleration

levels). Thus, there is a need to devise a method that produces optimum state estimates despite

the incomplete a priori knowledge of parameter statistics, and provides the estimates in an

adaptive, on-line fashion. The multiple model adaptive filter (MMAF) satisfies these requirements

[181.

To implement the MMAF algorithm, it becomes necessary to discretize the parameter

space by the judicious choice of discrete values that are representatively dispersed throughout the

continuous range of possible values. For the tracking problem at hand, a target can display K

different discrete sets of dynamic maneuvers corresponding to one of K discrete values of

acceleration vectors. As previously shown in Figure 1.1, a Kalman filter is then designed for each

choice of parameter value, resulting in a bank of K separate elemental filters.

Let a denote the vector of uncertain parameters in a given linear state model for a
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dynamic system, A system model would be represented by the following time-invariant, first-

order, stochastic differential equation:

I(t) - F(a)x(t) + B(a)u(t) + G(a)w(t) (2-25)

with noise corrupted, discrete-time measurements given by:

z(t,) = H(a)x(tj) + v(t,) (2-26)

where

x(l) = n-dimensional system state vector

u(t) = r-dImensional deterministic control vector

w(t) = s-dimensional white, Gaussian, zero-mean noise vector

process of strength Q(a)

z(t4) = m-dimensional measurement vector

v(t,) = in-dimensional discrete-time white, Gaussian, zero-mean

noise vector process of covariance R(a)

F(a) = n x n system plant matrix

B(a) = n x r input distribution matrix

G(a) = n x s noise distribution matrix

H(a) = m x n matrix relating measurement to states

The parameter vector, a, is discmetized into a set of K finite vector values, a,, a%,...a., and

associated with each ak is a different system model of the form given by Equations (2-25) and

(2-26). Each elemental Kalman filter, tuned for a specific a,, produces a state estimate which is

weighed appropriately using the hypothesis conditional probability pk(tI) to produce the state

estimate .9,,,, (t4) as a probabilistically weighted sum, where:

PK(t1 ) = (2-27)
Yf()aZ"' z, laP Z,.1)Pj(tI.1)
-I1
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expf .)
o,).zc,,.(zI Iak,Z,_) - (2T), I A (t,)I2 (2-28)

(222

with

Ak(t,) = kth filter's computed residual covariance

= Hk(tI)PPOtW)It(ti) + Rk(t)

rk(t4) w kth filter's residual

= [z( 1) - Hk(t,)l(ti) I

ak = parameter value assumed in the kth filter

Pk(tj) = kth filter's computed state error covariance before

incorporating the measurement at time t,

Z(t1.l) = measurement history up to time t,.,

The residual of the kth elemental Kalman filter, that best matches the current target

dynamics associated with the parameter value a4, is expected to be smaller than the residuals of

the other mismatched filters. The hypothesis conditional probability given by Equation (2-27)

with index corresponding to the "correct" filter will then be the largest among the other

conditional probabilities, thus assigning the most weight to the "correct" state estimate. This

algorithm performs well if each elemental filter is optimally tuned for best performance for a

specific target scenario, causing its residual to be distinguishable from those of the mismatched

filters. it is also important not to add excessive amounts of pseudonoise to compensate for model

inadequacies, since this tends to mask the distinction between good and bad models [171. If the

quadratic forms within the exponentials of Equation (2-28) are consistently of the same magnitude,

then Equation (2-27) will result in the growth of the PA associated with the filter with the smallest

value of I Ak I. The values of I Ak I are independent not only of the residuals, but also of the
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"correctness" of the K models, and so the result would be totally erroneous [181. Therefore, the

scalar denominator of the exponential in Equation (2-28) might be removed in the final

implementation of the algorithm.

The output of the MMAF algorithm is the probabilistic weighted average of the elemental

filter's estimates given by:

K

. , ) 1 -- P(t,) (t) (2-29)
k-1

The conditional covariance matrix for the MMAF is computed as:

K

Pmf(t:) = Ej PkPt)[Pk(t) + Y.9(t, ). r(ti)] (2-30)
k-1

where

2,01() -. It,*)

Pk = kth filter's conditional hypothesis probability

P/(t4) = kth filter's state error covariance matrix after incorporating

the measurement at time t,

Since the values of pk(ti) and f,, (t,+) depend upon the discrete measurements taken through time

ti, Pf (t,+) cannot be precomputed as in the case for the elemental filters. However, Equation

(2-30) need not be computed for the on-line filter algorithm.

The calculated probabilities of Equation (2-23) should involve an artificial lower bound

[12,18,321. This lower bound will prevent a mismatched filter's hypothesis conditional probability

from converging to (essentially) zero. If a filter's Pk should reach zero, it will remain zero for all
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time, as can be seen from the iterative nature of Equation (2-27). This effectively removes that

filter from the bank and degrades the responsiveness of the MMAF to future changes of the

parameter values. If some future target dynamic scenario matched the model for which the p. was

locked onto zero, that elemental filter's estimate would not be appropriately weighted and the

MMAF estimate would be in error. In previous work, Tobin [41] established a lower bound of

.001 for pk(td).

2.4 Summary

This chapter presented the mathematical models of the linear Kalman filter and the MMAF

algorithm. The linear Kalman filter is an optimal estimator and constitutes an elemental filter in

the MMAF structure used for the AFIT adaptive tracking system. The MMAF is an adaptive

algorithm that optimally combines the estimates of individual Kalman filters that are tuned for a

specific parameter value. This preliminary research of locating the hardbody via Doppler

measurements utilizes linear hardbody center-of-mass Kalman filters that function autonomously

from the six-state FLIR Kalman filter. The enhanced correlator that produces the offset "pseudo-

measurements" as a result of comparing the FLIR image to an optical processed template is

presented in Chapter V's discussion of the filter measurement models.
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11L. Simulation Space

3.1 Introduction

Simulation of the tracking scenario, which encompasses the target trajectory, the FLIR

sensor operation, and the low-energy laser illumination of the missile hardbody and the generation

of the speckle return and Doppler measurements, is performed on a digital computer. A 3-

dimensional "simulation space" is generated wherein a target plume is propagated along a realistic

trajectory. Several coordinate frames in the simulation space provide the means of mathematically

projecting the target plume's infrared image and velocity vector onto the two-dimensional FLIR

image plane [ 10,11,32]. In addition, these frames axe utilized to project a representation of the

hardbody center-of-mass, as well as to define the start and orientation of the low-energy laser scan

for generating speckle and Doppler measurements [5,6]. This chapter describes the different

coordinate frames of the simulation space and cover the process of pointing the FLIR sensor at

the target during tracking.

3.2 Coordinate Frames

As shown in Figure 3.1, three primary coordinate flames are defined in the simulation

space: a system inertial reference frame, a target reference frame, and an cx-13-r reference frame.

Each of these reference frames is described in the following paragraphs.

3.2.1 Inertial Reference Frame. The inertial reference frame is a North-Up-East (NUE)

frame wherein the target flight trajectory occurs.

Origin: location of the FLIR sensor
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Target Frame Apparent Intensity Up
SCentroid Image ey

Hardbody East

North
eppx

L+XR Inertial
Plume .Ftl : Frame
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Centroid -
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Vector I j

a - [ Plane+), FLUR (FLIR)

Figure 3.1 Three Primary Coordinate Frames in Simulation Space

Axes: e, - due north, tangent to the earth's surface, defines zero azimuth

ey- inertial "up" with respect to flat earth approximation

e, - vector completing right-hand coordinate set, defines 900 azimuth

Note: The azimuth angle (a) is measured eastward from e,. The elevation angle

(03) is measured "up" from the horizontal plane defined by e, and e,.

3.2.2 Target Plume Reference Frante. This frame is located at the target plume with one

of its unit vectors co-linear with the target's velocity vector.

Origin: plume intensity centroid

Axes: e, - along the true velocity vector
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ep,- out the right side of the target, orthogonal to both e, and the

LC3 vector

ep - vector completing the right-hand coordinate set

Note: - along the velocity vector

- perpendicular to the velocity vector

P,, - perpendicular to both , and ..

3.2.3 (x - P3 - r Reference Frame. The a-p-r reference frame is defined by the azimuth

angle c' and the elevation angle 13' measured with respect to the FLIR line-of-sight (LOS) vector

cr The true azimuth ax and the true elevation 1P are referenced from true north and the horizon.

This frame is used to project the target's position and velocity onto the FLIR plane.

Origin: plume intensity centroid

Axes: er, coincident with the true sensor-to-target LOS vector

e,, and e, define a plane perpendicular to er, rotated fi rni inertial e. and -Y

by the azimuth angle (cx) and elevation angle (1P)

There are three special coordinate frames associated with the a-13-r referenc,•. frame: the cx-O

(FLIR) plane. the absolute a-13-r reference frame, and the trans-FL!R plane.

3.2.3.1 a - ji (FLIR Image) Plane. The FLIR plane is used to obtain the measurements

of the target plume position and is the refe.rzct- frame for the geometrically derived velocity

vector componer ts of the target's intensity centroid. The FLIR plane is defined by the e,, and e,

unit vectors, with the LOS vector (orthogonal to the FLIR plane) representing the pointing

orientation of the FLIR sensor, and the high and low-energy laser. Note the orientation of the

+YMR axis in Figure 3.1, which allows the LOS vector to be positive towards the target when it
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is considered the third memb(..r of a right-handed set of coordinates as defined by the unit vectors

ep - ej - e,.

Due to the large distance to the target (approximately 2,000 kilometers), small angle

approximations are invoked, allowing the "pseudo" azimuth and elevation angles, a' and P', to be

linearly proportional to the x and y cartesian coordinates in the FLIR plane. The x and y

coordinates are measured in pixels (a pixel of linear length corresponds to 15 pradians of arc) and

will provide a means of evaluating the performance of the Kalman filter associated with aacking

the intensity centroid of the target.

3.2.3.2 Absolute ot-P-r Reference Frame. The absolute o-13-r reference frame is fixed in

inertial space at the i.'itial a-P-r coordinates of the target. This coordinate system defines the

initial pointing direction of the FLIR LOS vector e,, and is also used to define the true and filter

estimated target positions and velocity components on the FLIR plane.

3.2.3.3 Trans-FLIR Plane. This plane is defined as the result of translating the center

of the FLIR FOV to the true center-of-mass cf the missile hardbody. The frame is used to

determine the xr and y., coordinate errors of the hardbody center-of-mass filter's estimates,

for performance analysis purposes.

3.2.3.4 ALT/ACT Plane. This plane, shown in Figure 3.2, is a rotation of the trans-FLIR

plane by the true orientation angle 0,, formed by the target trajectory with respect to the FLIR

coordinate plane. It is used to determine the along-track and across-track components of the

tracking error mean and covariance of the hardbody center-of-mass estimates [6].
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"y FUR
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+ALT (along track, and
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Center-of-Mass --
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+ACT (across track)

•,1• 
+X MIR

Figure 3.2 FLUR Plane, Trans-FLIR Plane, and ALT-ACT Plane

3.3 FUR Image Plane

All dynamic events associated with the target plume intensity "pattern" or "function," and

the active illumination of the missile hardbody in 3-dimensional inertial space are projected onto

the 2-dimensional FLIR image plane. The measurements generated as a result of IR detection by

the FLIR sensor are provided to the enhanced correlator algorithm, which produces "pseudo-

measurements" to the FLIR Kalman filter to update its state estimates. For the missile hardbody,

low-energy laser-generated measurements of the offset distance relative to the plume intensity

centroid are geometrically projected onto the FLIR image plane. Thus, the FLIR image plane is

the realm in which the performance of the Kalman filter is evaluated. Also note that it is a natural
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plane for sucb evaluation of a laser weapon, since pointing angle errors are critical and range is

not. This section introduces the FLIR Field-Of-View (FOV) "tracking window," and discusses

the construction and projection of the target models.

3.3.1 FUR Field-Of-View. The FLIR FOV, shown in Figure 3.3. consists of an 8 x 8

pixel sub-array (in the FLIR sensor 300 x 500 pixel array) which provides tensed information as

a function of the varying intensity of the plume IR image and the background and internal FLIR

noise. Based upon this information, the position estimates from the six-state FLIR Kalman filter

serve to center the centroid of the plume IR image in the FOV. Since the low-energy laser is

boresighted with the FOV, the FLIR filter position and velocity estimates of the intensity centroid

define the origin and orientation of the laser scan to "paint" the hardbody. The errors of the FLIR

filter's estimate of the cencroid position and velocity, and the hardbody centrmr-of-mass filter's

estimate of offset, are expressed in units of "pixels." These errors become meaningful through

a pixel proportionality constant, kP equal to 15pradians/pixel [35]. With this constant, 1 pixel

corresponds to approximately 30 meters for a range of 2,000 kilometers.

3.3.2 Targei Models on the FUR Plane. The difference of two Gaussian intensity

functions creates a planform that models the hotspot of the plume target on the FLIR plane [35],

as shown in Figure 3.3. The "trailing" function is subtracted from tho "leading" function to

construct a suitable approximation of empirically observed plume intensity profiles. The missile

hardbody is not sensed by the FLIR sensor. However, it is geometrically projected onto the FLIR

plane as a rectangle, located an offset distance from the plume centroid along the target's velocity

vector. Since the FLIR sensor can only detect the IR intensity shape function of the plume, the
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Figure 3.3 Target Plume image in 8 x 8 FUIR Field-of-View (FOV)

remainder of this discussion emphasizes the intensity centroid model. More about the hardbody

model will be. presented in Chapter IV.

3.3.2.1 Target Plume Model on the FUR Plane. The radipted energy from each intensity

function is represented as a bivariate Gaussian distribution with elliptical constant intensity

contours, Each of the two bivariate Gaussian intensity functions is given by [3J5]:

1XI Yx'yXpeak(t) Ypeak(t)] =I 1neXP[-O.5 (AxAY) P-'(Ax AY)' (3-1)

where
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Ax = (x - xpea,)Coso, + ( y - ypL.)sinO,, measured along the ALT axis of

Figure 3.2

Ay = ( y - yp,,&)cos0, - (x - xpek)sinO,, measured along the ACT axis of

Figure 3.2

0, = true target orientation angle between the projection of the velocity

vector and the x-axis in the FiIR plane; see Figui a 3.2

x, y w coordinate axes on the cx - 15 plant;

XPaA), yp,, = peak intensity coordinates of the single Gaussian intensity function

= maximum intensity function

P = 2 x 2 target dispersion matrix whose eigenvalues (ov' and o. 2)

define the dispersion of the elliptical constant intensity contours

Figure 3.4 illustrates the spatial relationship between the two intensity functions along the target

e, axis. The displacement values are based on the assumption that the dispersion of the exhaust

plume in the ep, direction (normal to both e, and the LOS vector) is approximately 23 times the

diameter of the missile [35]. With the dimensions of the hardbody chosen as 40 meters long and

3 meters in diameter, the centroid of the first intensity function is located 65 meters behind the

hardbody center-of-mass. The placement of the first centroid simulates the composite centtroid

of the exhaust plume being close to the missile exhaust nozzle, whereas the position of the second

centroid enables one to simulate different plume shapes. The second, trailing" centroid is

arbitrarily located 110 meters from the center-of-mass and the defined spatial relationship remain

fixed in the target frame during the simulation (should the difference between the two Gaus' an

intensity functions become negative, the simulation clips the difference to zero). Any external

forces acting on the missile other than thrust and gravity are assumed negligible, which thus yields

an assumed zero sideslip angle as well as zero angle of attack. These assumptions allow the semi-
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Figure 3.4 Spatial Relationship of Target Plume Gaussian Intensity Functions

major axes of the elliptical constant-intensity contours to be aligned with the projection of the

target's velocity vector onto the FLIR image plane, and provides a simplified simulation geometry

while retaining the essential features of the trajectory simulation.

3.3.2.2 Target Plume Projection onto the FUR Plane. As the target plume is propagated

through inertial space, the output of the FUR pixels is simulated by projecting the two intensity

functions onto the FLIR plane. The geometry of the projection is shown in Figure 3.5. The

"reference target image" is oriented on the FLIR plane to correspond to the largest apparent

planform (i.e., with its velocity vector orthogonal to the LOS vector) at a given initial reference

range, r,. As seen in Figure 3.6, the target intensity image is defined by the dispersion along the
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Figure 3.5 Target Plume Intensity Centroid Projection Geometry

principle axes of :be two Gaussian intensity functions, given by:

clpýý UP 1`1(3-2)

where
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Figure 3.6 Intensity Centroid Dispersion Axes in FUR Plane

S= the initial dispersions of the target intensity functions along e, and ep, in the

target frame of the reference image

ao, ow = the current dispersions of the target image

ro = initial sensor-to-target range of the reference image

r = current sensor-to-target range

v = initial velocity vector of the target

v = magnitude of v

V.OS f= projection of v on the (x - P plane (FLIR); i.e., the component of v

perpendicular to the LOS vector

V.LOS = magnitude of vus:
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VILOS -_ + (3-4)

y target aspect angle between v and the a - P3 plane (FLIR)

0 = angle between Vj(os and +xý11

AR -- a~p,,o: aspect ratio of the reference image

Referring back to Figure 3.4, the location of each intensity function, or "hotspot," is

initialized as a displacement from the hardbody center-of-mass. The intensity functions are

oriented in the FLIR plane via the true target orientation angle 0, The relative positions of the

two intensity functions in the FLIR plane vary in response to the change in target aspect angle Y

(of Figure 3.5), while the spatial relationship of the hotspots remains the same in the three-

dimensional target frame. If the plume pogo forcing input is applied, the hotspots do not remain

fixed in the target frame, causing the composite image centroid to oscillate along the velocity

vector and produce additional perturbations to the hotspot image in the FLIR plane [35].

3.3.2.3 Target Plume Velocity Projection onto the FLIR Plane. The general discrete-time

equation that models the target dynamics is given by:

x(t,,,) = (D(t,.1, t,)x(t,) + B,(t,)u(t,) + Gd(t,)wd(t,) (3-5)

where

'F(t1 1, ti) = the system state transition matrix

x(t,) = discrete-time vector of states of interest

Bd (t,) = discrete-time control input matrix

u(t,) = discrete-time deterministic control input vector

Gd (ti) = discrete-time driving noise input matrix
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wI (ti) = discrete-time, zero-mean, white Gaussian noise process with independent

components and covariance Qd

Based on the geometry shown previously in Figure 3.5, the projection of the target's

inertial velocity vector onto the FLIR image plane is the deterministic input vector given by [10]:

where

ud t4) = true target deterministic input vector

6'(t1 ) = target azimuth rate in the FLIR plane

f(ti) -. target elevation rate in the FLIR plane

As seen in the inertial frame diagrams of Figure 3.7, the azimuth angle can be defined as:

ctt) = arctan [z(t) (3-7)

Taking the time derivative of Equation (3-7) and noting that the sensor-to-target range is large so

that d'(t,) = 6t#), the azimuth velocity in the FUR plane is given by:

'(t) =•(t) - x(t)v2(t) - z(t)vx(t) (3-8)

x2(t) + z2(t)

where

vs,, vz = components of the target's inertial velocity in the er and e, directions
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Figure 3.7 Inertial Velocity FLIR Plane Projection Geometry

Similarly, the elevation velocity in the FLIR plane is given by:

()= (t) - r,(t)vY(t) - y(t)*h(t) (3-9)
r2 (t)

where

vy = component of the target's inertial velocity in the ey direction

rh = horizontal projection of the sensor-to-target range, with its time derivative

expressed as:

t'(t - x ,(vt) z(t)V,(t) (3-10)

r(4t)

3-14



3.4 FLIR Sensor Pointing Controller

The Kalman filter's propagated estimates of the intensity centroid's position dictate the

necessary change in azimuth and elevation the FLIR sensor should undergo over the next sample

period to center the hotspot on the FLIR FOV plane at the next mneasurement sample time.

Ideally, these positional estimates are fed as commands to a pointing controller that physically

implements the directional changes within one sample period (1/30 sec). However, the activation

and execution of these commands will not be perfect due to the lag dynamics inherent in the

controller, and the resultant mis-positioning of the hotspot may be interpreted by the filter as target

motion, causing inaccurate estimates of future states.

Whether or not to include the controller lag dynamics in the simulation was the subject

of a previous thesis [32]. It was found that the apparent target motion caused by the lag dynamics

are interpreted by the filter as atmospheric jitter, implying a degree of robustness on the part of

the filter to track a target. Moveover, the degradation in tracking performance due to the dynamic

lag was found not to be of primary importance. Thus, the controller is modeled as lag-free in this

research.

3.5 Summary

This chapter described the three main coordinate frames used in the simulation to establish

the target plume on the FLIR image plane: 1) the 3-dimensional inertial reference frame, in which

the target plume is propagated along its trajectory, 2) the target reference frame, used to define

the axes of the target plume, and 3) the a - P - r frame, used to define the apparent image of the

target plume's intensity centroid on the FLIR FOV. The model of the target plume was pictured
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as a planform resulting from the difference of two Gaussian intensity functions with elliptical

constant-intensity contours. The missile hardbody is not detected by the FLIR sensor, but is

projected on the FLIR image plane as a rectangle that lies along the velocity vector. More will

be. said about the hardbody and measurements of its displacement from the plume centroid in the

next chapter. The spatial displacement of the two intensity functions, relative to the hardbody,

remains fixed in the target frame during the simulation. Plume pogo is invoked by oscillating the

composite centroid along the plume's velocity vector. The position and velocity of the intensity

centroid is projected onto the FLIR image plane using the geometric relationships between the

three main frames. The trans-FLIR plane and the ALT-ACT plane are used to identify the missile

thardbody center-of-mass, as will be seen in the next chapter. The FLIR sensor controller is

modeled as lag-free since the filter interprets the lag dynamics-induced motion of the intensity

centroid as atmospheric jitter, and previous research has demonstrated that ignoring this effect still

yields viable performance evaluations.
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IV. Truth Model

4.1 Introduction

A "truth model" represents the designer's best mathematical interpretation of the real-

world dynamics as applicable to the system of interest. Such a model is the product of extensive

data analysis, shaping filter design and validation in order to be confident that it adequately

represents the real world, since the performance evaluation and systematic design procedure is

totally dependent upon this assumption [17]. In many cases, the complete description of true

"system behavior may require an infinite-dimensional state model. Of course, for computational

and simulation purposes, the number of truth model states must be of finite dimensionality, yet

capture the dominant characteristics of system behavior. The Kalman filter is developed by

systematically reducing the truth model to form the filter design model, and the resulting filter is

constantly evaluated against the full-state model to ensure performance specifications are satisfied.

The dynamics of the target intensity centroid's image on the FLIR detector plane are a

result of true target motion, atmospheric jitter due to distorted infrared wavefronts,

bending/vibration of the optical hardware, and pogo effects of the plume's oscillations. The truth

model is composed of the following fourteen states [12,27,35]:

2 target dynamic states

6 atmospneric states

4 mechanical bending states

2 pogo oscilation states
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These dynpmics are represented as changes of the image intensity centroid in the FUR plane, with

the centroid components x, and y, being measured in pixels from the center of the FOV in the x

and y FLIR plane directions. Refering to Figure 4.1, the position of the target image at any one

time is given by:

X_ =x d + X X + xpcos0, (4-1)

YCYý Y 2yd + Y. + yb - ýpsinW (4-2)

where

x•, y, = target image intensity centroid coordinates

xd, yd = coordinate deviation due to target dynamics

S.... ..... ..... ... .. ... . .. ....... ... ..... .. ........ ...... i .............. i. . .. . ................

*X x
,•_ •~ ................ . ..... .... . ...... ... . ..... ....... ........... ?.... .

8 x 8Array_....................... ........ ..... . .o f P ix e ls

Plume tnt..nsity [Centrdid

..... . ... ....... .... .... .. ...

\0
M d

FUR

Y -a - [$ Plane (FLIR)÷YUR

Figure 4.1 Plume Intensity Function Position on FLUR Image Plane
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xa, y, = coordinate deviation due to atmospheric jitter

xb, yb = coordinate deviation due to bending/vibration of optical hardware

xp = coordinate deviation due to pogo oscillations along the velocity vector direc'ion

at, = true target orientation angle

Note that Equation (4-2) has a minus sign before the resolved pogo component, due to the

coordinate definition of the FLIR coordinate frame. The states xa, xb, xd, xp, Y., Yb, and ya comprise,

the output states which are extracted from an overall state model in the form of fourteen coupled

scalar stochastic differential equations. The states xa and Yd are each modeled by first-order

differential equations; xb, yb, and xp awe each modeled by second-order differential equations; and

x, and y, are each modeled with third-order differential equations. These differential equations,

when in space-stale format, comprise the dynamics portion of the FLIR tracker truth model.

This chapter presents the dynamics model, the models of measurements that provide the

Kalman filter periodic updates, and the initial conditions of the truth model equations and target

trajectories. Some of the discussion is taken from Evans' thesis with minor modifications.

4.2 Dynamics Model

The fourteen-state model state vector is described by a first-order, stochastic diferential

equation given by:

1, (t) = F,x,(t) + B u,(t) + 6,w,(t) (4-3)

where

F, = 14 x 14 time-invariant truth model plant matrix

x, (t) = 14-dimensional truth model state vector
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Bt W- 14 x 2 time-invariant truth model control distribution matrix

u, (t) = 2-dimensional determittstic input vector

G -- 14 x 14 noise distribution matrix (G, -= )

w, (t) = 14-dimensional, white Gaussian noise process with mean and covariance

kernel statistics:

E~w,(t)1 0E fwp) = 0(4-4)

E(w,(t)wr(t + 0) - Q,80)

To simulate the target dynamics model on a digital computer, the following equivalent

discrete-time solution to Equation (4-3) is given by:

x,(t 4 ) = 4•(t 1 ,td)xt) + dUtd(ti) + Gtdwid(t,) (4-5)

where the state ti-nsition matrix 45, (,t,t) is the solution to the differential equation:

d'l(t, ti) F F$(t, t,) (4-6)

dt

with the initial condition: 0,(t,, t,) = 1, (note that, for constant F,, t(ta) can be expressed as

), (tNI )) and

x, (t,) = 14-dimensional discrete-time truth model state vector

B. = 14 Y 2 discrete-time truth model control distribution matrix

u,d (t,) = 2-dimensioiial discrete-time input vector

Gd = 14 x 14 discrete-time noise distribution matrix, (Gi =/1

w,d (t4) = 12-dimensional discrete time, white Gaussian noise process with mean and

covariance statistics:
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0= 0 (4-7)

E(wd(td,)r(t,)} = Qd --" ),(tj,, T)G,Q,G,T(D'tI,- c)dT (4-8)

where Q, is defined in Equation (4-4). The discrete-time input distribution matrix Bd is defined

as:

Bi -- f',(t,. - r)B tdc (4-9)

Note that this computation assumes u, (t) is constant over each sample period: u, (t) = u/tI) for

all t E [tJ,1i ).

The fourteen states of the discrete-time truth model are defined in the x and y coordinate

axes of the FLIR plane as:

XFUR YLJR

1 target state 1 target state

3 atmospheric states 3 atmospheric states

2 bending/vibration states 2 bending/vibration states

2 plume pogo states

where the plume pogo states are in neither the xU, nor Y..R direction. These states are augmented

into the truth model state vector:
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XI

X. (4-10)
-- .. X, I ....

Xb

XF

where

xd = 2-dimensional target dynamics state vector

x, - 6-dimensional atmospheric state vector

Xb = 4-dimensional bending/vibration state vector

x. = 2-dimensional plume pogo state vector

The 14 x 14 discrete-time truth model state transition matrix (1, is given by:

0 c J, 0 0-- 2 •, __ ...... .... .... ( -1
0 (1) 0 0(4-11)

0 0 i4b 0

S.... ...., ,. ...

L 0 0 0

where the partitions correspond to the dimensionality of the states defined above. The 14 x 2

discrete-time truth model distribution matrix Bd is given by:

K]l (4- 12)
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where B, is a 2 x 2 discrete-time control distribution matrix. The 14-dimensional discrete-time

truth model white Gaussian noise process wP is given by:

0

wd.] (4-13)W'd = ....

Wdp

where

wt,) -- 6-dimensional discrete-time, white Gaussian noise related to atmospheric

jitter states

wdb(ti) = 4-dimensional discrete-time, white Gaussian noise related to bending states

w4 (ti) 2-dimensional discrete-time, white Gaussian noise related to plume pogo

states

The block diagonal form of Equation (4-5), as seen in Equations (4-10) through (4-13), allows the

models for target dynamics, atmospheric jitter, bending/vibration, and plume pogo to be presented

separately. The following sections discuss each of the discrete state models which form the

stochastic discrete-time truth model.

4.2.1 Target Model State Description. As depicted in Figure 4.2, the a-P plane (FLIR

image plane) is coincident with the FLIR sensor FOV, and perpendicular to the LOS vector e,.

In the simulation, the 3-dimensional target dynamics are projected onto the FLIR image plane, and

the position components of the target's intensity centroid are obtained from the azimuth and

elevation displacement angles (oc" and • ', respectively). Since the target distance is simulated

4-7



UiP a - Plane i .LOS Vector

Fiur 4. TParget etodIaeo 3Paewt Ped"Age

(di y LIR) u ler

ee

x •"-•"+X

Elast +----- Intensity Centroid
7 ~e"

Figure 4.2 Target Centroid Image on oc-P• Plane with "Pseudo" Angles

as 2,000 kilometers, small angle approximations aie used measuring the angle displacements in

the cartesian coordinate system of the FLIR image plane. These "pseudo" angles, ot ' and P % are

referenced fr'om the current LOS vector and measured in microradians. Note that the unusual

orientation of the +Yr11R axis in Figure 4.2 allows the positive z axis to be in the positive e,

direction (by the right-hand rule).

The linear translational coordinates, x, and y, of Equations (4-1) and (4-2), locate the

target intensity function on the FLIR plane and are measured in pixels of displacement from the

center of the FLIR FOV. Tile angular and linear measurements are related by the pixel
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proportionality constant kP. which is the angular FOV of a single pixel. Presently, the value of

kp is approximately 15 microradians per pixel for long range targets [5,35],

The derivation of the state space model of the target dynamics assumes that the azimuth

and elevation rates (a " and 13 ", respectively) remain essentially constant over each sample period

At. Then the discrete-time target dynamics model is:

xd(tq)-d =xd(td) + (XI) (A t) (4-14)

(a')(At) (4-14)
xaQt, 1) = xd(ti) ~ ____

lop

Yd(O1) Yd(t) 0) (13)A) (4-15)
ýp

Arranging these equations in state space form yields:

Xd(tId) = d(t(,-,t)x•d(td) + Bdud(t1) (4-16)

= 1o[dI 1 + [ 1 It) 1 (4-17)

where

a "(t,) = da '/dt, measured in microradians/second and constant over the time interval

At

-(t3) = d' 7dt, measured in microradians/second and constant over the time interval

At

At = sample time interval, t,, .- tj

k= = pixel proportionality constant (15 microradians/pixel)

4-9



Using these relationships in block form of the overall truth model, by inspection of Equation

(4-11), the upper left block is:

Od (4-18)

and the upper block of Equation (4-12) is:

At
B (4-19)B a dd A t0

and the input vector in Equation (4-5) is given by:

1t (4-20)1, 5'(t,)J

The minus sign of the lower right term in Equation (4-19) is due to the difference in the y axis

orientation between the inertial coordinate frame and the FLIR coordinate plane.

The two target dynamic states of Equation (4-10) are used to propagate the missile along

its trajectory. The formulation of the truth model target dynamics states in deterministic state

space form has two advantages. First, Equation (4-17) can be substituted back into Equation (4-5)

to form a single augmented vector differential equation that defines the truth model. Second, the
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state space form allows the addition of white (or time-correlated) noise to Equation (4-17), if a

stochastic, rather than a deterministic dynamics model. is desired.

4.2.2 Atmospheric Jitter Model. The model for the translational displacement of the

intensity function due to atmospheric disturbances, is based on a study by The Analytic Sciences

Corporation [27]. Using power spectral density characteristics, the atmospheric jitter phenomenon

in each FLIR plane axis direction can be modeled as the output of a third-order shaping filter

driven by white Gaussian noise [27]. The Laplace domain representation of the shaping filter

transfer function is given by:

2
Xa(S) = Ka ojlO (4-21)

wJ(s) (s ) + 0 02)2

x, = output of shaping filter (xu direction)

wa = zero-mean, scalar, unit-strength white Gaussian noise

K, = gain, adjusted for desired atmospheric jitter rms value

o•= = break frequency, 14.14 radians/second

(02 = double-pole break frequency, 659.5 radians/second

The atmospheric jitter effects can be modeled similarly in the YN2R direction, wherein y,

would be the output of an identical shaping filter defined in Equation (4-21). The two shaping

filters are assumed to be independent of each other and can thus be augmented to form a six-state

modei. The linear stochastic differential equation that describes the atmospheric jitter is given by:

F*x(t) + Gw (t) (4-22)

where
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F, =6 x 6 time-invariant atmospheric jitter plant matrix

x,(t)= 6-dimensional atmospheric jitter state vector

G. =6 x 2 noise distribution matrix

w,() - 6-dimensional, independent, zero mean white Gaussian noise with unit

strength and independent components described as:

Efw (t,)l - 0

E{w.(t) wT(t~) = Q I1 0 ('1 (4-23)

10 1

The six atmospheric states in the state vector correspond to the low frequency pole and the higher

frequency double pole in the xrtm and the yrL directions. The atmospheric jitter plant matrix is

defined in Jordan Canonical form as:

-Os 0 0 0 0 0

0 -02 1 0 0 0

0 0 -0)2  0 0 0 (4-24)

0 0 0 -(DI 0 0

0 0 0 0 -0)2 1

0 0 0 0 0 -2

The noise distribution matrix G, is:
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(01 - 02)2

((0,1 - (.02)2

2
KaOtiO:) 0

a0
0 pao)2O)

(0. - 02)'

K 20 p K 1(o02

( 0, - 02)

The equivalent discrete-time model for Equation (4-22) is of the form:

Xo(t 1ý1) - 4)(tw~,,tt)xo(td) + wdM(tr) (4-26)

The augmented six-state state transition matrix derived from the time-invariant piant matrix of

EXquation (4-24) is [271:

4,.1 0 0 0 0 0

0 Oba22 at,23 0 0 0

( ) 0 0 33 0 0 0 (4-27)
0 0 0 (,, 0 0

0 0 0 0 (D5 (km

0 0 0 0 0 4ý6
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where

Ia = 0a44 = exp(-(o)At)

4122 (D.5 = exp(-o02At)

,J-23 (D = At exp(-o"At)

01m= q>, = exp(-woAt)

At = sample time interval, t,,, - t,

The 6-dimensional, 7ero-mean, discrete-time, white, Gaussian noise w,(t,) has statistics defined

as:

E{wd.(t,)' = 0

',-1 (4-28)
E {fwd(t) Wjd(t )} = Qd. = J(% 1 - hdt

4.2.3 Bending/Vibration Model. The mechanical bending states were added to the truth

model to account for the vibrational effects in the FUR data that occur when the sensor is

mounted on a reoving, non-rigid optical platform [12]. Based on tests at the AWFL (now Phillips

Laboratory), it was concluded in previous research [12] that bending effects in both the xr• and

y,. directions can be represented by a second order shaping filter, driven by white Gaussian

noise. The Laplace domain transfer function for the bending model is:

2
xK'(8,) K'°Onb (4-29)

bs) s 21 ws + nb2

where

xb = FLIR plane positional offset (xrJ, direction) due to mechanical bending

disturbance

w, = zero-mean, unit strength, white Gaussian noise
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Kb = gain adjustment to obtain desired rms bending output,

(Kb'2 = 5 x 10"'rad4/sec4)

- damping coefficient, equal to 0.15

,nb = undamped natural frequency for bending, (co = it rad/sec)

The FLIR plane positional offset in the yn~m direction, Yb, is identically modeled with the

shaping filter defined in Equation (4-29). The two shaping filters are assumed to be independent

of each other and can thus be augmented to form a four-state model. The linear stochastic

differential equation that describes the bending/vibration is given by:

I b(t) = Fbx,(t) + Gbwh(t) (4-30)

where

Fb = 4 x 4 time-invariant bending plant matrix

xb(t) = 4-dimensional bending state vector

G6 = 4 x 2 noise distribution matrix

Wb(t) = 2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

E{wb(t), = 0

T 1 (E (4-31)
E4b(tOw[(t+4) = Qbb(X) =~ 6t

The bending/vibration plant matrix is defined as:
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0 1 0 0
2 -

-nF b '2bob 0 (4-32)

0 0 0 1

0 0 -b20 n -2bw(nb

The noise distribution matrix Gb is:

0 0

S=Wnbý 0 (4-33)
0 0

o (.1bkp

(Note that kP is the pixel proportionality constant)

The equivalent discrete-time model for Equation (4-30) is of the form:

Xb(tt,) = 4(tI-lt,)Xb(tI) + Wdb(tl) (4-34)

where

4 4'<Pb12 0 0

4b(A) 2 (b22 0 0 (4-35)

0 0 Db33 (b34

0 0 €Ib43 Db44

and

")I I 4)b33 = exp(-obAt)[cos(o~,At) + (odbo) sin(Obt)]

'b12 4-b34 = exp(-oQAt)[(l/oa) sin(w.At)]

121 (I=43 = exp(-a1At)-l - (yj~ob) 2 sin(oeAt)]
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4122 = D = exp(-aAt)[cos(aobAt) - (adwb) sin(oVAt)]

At = sample time interval, tm-t 1

at = real part of the root of the characteristic equation in Equation (4-29),

(ab - 0.47124 second-)

ob = imaginary part of the root of the characteristic equation in Equation (4-29),

(ob = 3.10605 radians/second)

The 4-dimensional, discrete-time, white Gaussian noise process vector wdb(ti) has mean and

covariance statistics:

LAWdb(t) - 0

(4-36)
E4001 db( )l = Qdb = f.II(t, -r)GbQbGfbT(trI-x)dc

4.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical missile plume

in the boost phase, a plume pogo model was developed [35]. A second-order Gauss-Markov

model was generated using physical insight, and visual observation of the pogo phenomenon. The

model allows for the study of the amplitude and frequency characteristics of the oscillatory nature

of the plume, and of the effect upon tracking a missile using a Kalman filter.

The transfer function of the plume pogo model is decribed in the Laplace domain as:

x =) Ko 2

xP(S) f•.p (4-37)
W(S) s 2 2rpwzs + Op

where

xP = plume pogo shaping filter output along the direction of the velocity vector

w. = zero-mean, unit strength, white Gaussian noise
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ýp = assumed damping coefficient, (ý = 0.05)

(O"p = nominal undamped natural frequency for pogo; assumed range is 0.1 - 10

hertz, with a nominal value of 1.0 Hertz

Kp = gain adjustment to obtain desired rms pogo amplitude determined by [351:

K -2aF (4-38)

where

ap = desired rms pogo along the velocity vector

The linear stochastic differential equation that describes the plume pogo is given in state

space form as:

[0 1 1 [0(39
.t(t,) 2 [o x(t) + o w,(t)

where

x,(t) = 2-dimensional pogo state vector

w,(t) = 1-dimensional zero-mean, white Gaussian noise with statistics:

(4-40)

E~wv(t)wp(t+t)} = QP6(t-r); Q'" = I

The equivalent discrete-time model for Equation (4-38) is of the form:

Xp(t1) = 4(tiPtd)XP(t) .+ wdp(t-1 (4-41)
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[::. ) =OP10 4jWAI)IF(tL) + Wd,(t1) (4-42)

where

OP, 1 (A t) ... L..exp( -Cw,)A t)sin (0 1VI- C'A t +arctan i!T•i

- CI -P

(ýI)21(At) = ý' exp(-C~o,,PAt)sin o P2 1At)

1 -- CP

Iý22(A t) exp(-C (opAt)sin o~ 1-(pAt +arctan (P2.. +.i

The 2-dimensional, discrete time, white Gaussian noise process wdp(t,) has mean and covariance

statistics:

Efwd,,(t1) =0

E fw,(t, 11- (t~j--u)GPPG z dr(4-44)
Wd~j Qp= fJ3$ "4))GtQ G I~P. -'r

The 2-dimensional pogo state vector defines the position of the plume image intensity

centroid and its velocity along the longitudinal axis of the missile. For the simulation, it is

assumed that the velocity vector lies coincident with the longitudinal axis of the hardbody. As

shown in Figure 4.3, the plume oscillates about an equilibrium point also located on the

longitudinal axis. This equilibrium point is defined by the initial positions of the two intensity
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Figure 4.3 Plume Pogo Oscillation

functions in the target coordinate frame (to be discussed in Section 4.3.1), and remains equidistant

from the hardbody center-of-mass throughout the simulation (the spatial relationship of the

intensity functions can be seen in Figure 3.4). The crescent-shaped plume represents one of many

equal-intensity contour lines of the actual plume. The angle of attack and sideslip angle of the

missile are also assumed negligible, and have zero values for the simulation [35].

4.3 Measurement Models

In real-world applications, physical sensors provide the measurements that are used by the

Kalman filter to update its state estimates. In the simulation, the measurement models generate

discrete-time measurements for the filters used in this thesis. These measurements are corrupted
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by simulations of sensor inaccuracies or measurement noise, with characteristics that are

determined from prior knowledge and/or physical insight of the sensor's limitations. Two distinct

types of measurements are modeled: first, "psuedo-measurements" are generated by an enhanced

correlator algorithm from raw FLIR data [36] to the six-state FLIR filter to update its position and

velocity estimates of the target plume centroid. Second, low-energy laser return measurements

of the hardbody are produced and furnished to independent center-of-mass filters. Use of the

latter type of measurements will allows one to explore the feasibility of the Doppler return in

discerning the plume/hardbody interface, as well as observe the effect of the plume's speckle

reflectance upon the hardbody's speckle return. For these reasons, this research is motivated to

study three separate, independent center-of-mass filters: a one-state filter that receives Doppler

return measurements, a one-state filter that accepts speckle return measurements, and a two-state

filter that processes both speckle and Doppler return measurements. These center-of-mass filters

will be discussed in detail in Chapter V.

The scenario for the center-of-mass measurement begins with the FLIR filter's estimate

of the intensity centroid's position. The plume of a ballistic missile in boost phase is tracked

using FLIR sensor measurements. The FLIR sensor measurements alone cannot provide any

information regarding the hardbody, for it only senses the plume's IR radiation. The "psuedo-

measurements" derived from the FLIR measurements and enhanced correlator are input to a linear

Kalman filter which estimates the position and velocity of the plume's intensity centroid. Using

the estimated intensity centroid position as a starting point, a low-energy laser is then scanned

along the velocity vector to obtain a reflection from the hardbody. Once the low-energy laser scan

illuminates the hardbody, information regarding the dimensions of the hardbody is obtained based

upon distinct low-energy laser returns of the plume/hardbody and the space-background/hardbody
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interfaces. An offset distance from the plume intensity centroid is calculated to pinpoint the

hardbody center-of-mass and is provided as the measurement to the one-state center-of-mass filter

for its update. If no laser reflection occurs, the one-state-filter continues to propagate its state

estimate.

Eden's [51 research revealed that, for long ranges, jitter in the filter-estimated intensity

centroid position resulted in a 15-20% rate of laser reflection from the hardbody. This low rate

hampered efforts to assess the performance of the one-state center-of-mass filter, and consequently,

a sweep of the low-energy laser scan about the velovity vector was created by Evans [6]. The

laser sweep, although not an efficient method of illuminating the hardbody, substantially increases

the rate of reflection returns and improves the estimate of the hardbody center-of-mass.

The two measurement models, one which simulates the 8 x 8 FLUR sensor array and one

which simulates the low-energy laser reflection returns, are discussed in subsections 4.3.1 and

4.3.2. An introduction to the basic concepts of the Doppler phenomenon and the Doppler

Measurement Model are presented in subsection 4.3.3.

4.3.1 FUR Model. The FLIR sensor model is composed of an 8 x 8 pixel array "tracking

window" extracted from the total array of 300 x 500 pixels. The missile plume is projected onto

the FLIR focal plane, with its characteristic crescent-shaped intensity function formed as the

difference of two bivariate Gaussian intensity functions, as shown in Figure 4.4. This model

depends upon knowledge of several parameters: ýhe size of the major and minor axis of the

elliptical contours of each bivariate Gaussian function, and the orientation of the principal axis in

the FUR image plane. The target intensity function obtained from evaluating the resulting non-

Gaussian intensity function is corrupted by spatially correlated and temporally uncorrelated
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background and internal FLIR noise according to models of actual data taken from a FUR sensor

looking at various backgrounds [331.

For each pixel in the FLIR FOV (the 8 x 8 array "tracking window"), the target's intensity

function, correlated background noise, and FUR internal noise are added together to produce an

intensity measurement. For the 8 rows and 8 columns of the FOV, the intensity measurement

corresponding to the pixel in the j'h row and k " column at sampling time t, is given by:

zII(tP) I-•• , Yxyx k,(t1),ymk,(t)

- I2[x,y,x'p,,,2(ti),y~2(t,)l }dxay (-5

+ njk(tI) + bjk(tI)
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where

z,(tI) = output of pixel in the j row and kh column

AP = area of one pixel

11, 12 = intensity function of first and second Gaussian intensity function

respectively of Figure 4.4

x, y = coordinates of any point within pixel jk

Xpeaki, Yp,,kl = coordinates of maximum point of first Gaussian intensity function

xp,,,,, yp,, = coordinates of maximum point of second Gaussian intensity function

ntik(ti) - effect of internal FLIR sensor noise on jk'h pixel

bjk(tj) = effect of spatially correlated background noise on jk h pixel

The sensor error, nrt(t4), is the result of thermal noise and dark current in the IR detectors

(pixels). This error is assumed to be both temporally and spatially uncorrelated [35].

The background noise, bL,(t,), was observed in the FLIR data by AWFL personnel during

a tracking operation [10]. It is represented as a spatially correlated noise with radial symmetry,

with a correlation that decays exponentially. Harnly and Jensen [10] concluded that spatial

correlation can be depicted as a correlation distance of approximately two pixels in the FLIR

plane, and simulated this by maintaining non-zero correlation coefficients between each pixel and

its two closest neighbors symmetrically in all directions. In that two-pixel distance, the correlation

decays exponenLially to one-tenth of its peak value.

The generation of spatially correlated white Gaussian noises is accomplished by allowing

non-zero cross correlations between the measurement noises, bft('t), associated with each of the

64 pixels from the 8 x 8 pixel FLIR FOV. The correlated measurement noise in Equation (4-45)

is given as:
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bt)=64-dimensional vector of spatially correlated noise with statistics:

Ebt) 0 (4-46)
E4b(t,)bT(t,)I RI

where R is a 64 x 64 measurement noise covariance matrix. T'his matrix describes the spatial

correlation between pixels, and is given by [10]:

1 r1,2 r,,3 *..r 1,.

1,, r2,3 .. r.,,6

R = CF. r3j r3,, r 3,6444~

r,>4,, r.4,, r., 1.

where aR2 is the variance (I each scalar noise and tu. - correlation ý;oefficients rlk are evaluated to

reflect the radially symmetric, exponentially decaying pattern. The spatially correlated background

noise b(t,) is simulated as:

b(t,) =Rb'(t,) (.8

where

V~ = Cholesicy square root

b'(t,) = 64-dimensional vector of readily simulated discrete, independent white

Gaussian noise with statistics:

E b'(1 )1 = 0 (4-49)
EWb(t 1)b'r(tj) = IN,
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4.3.2 Low-Energy Laser Speckle Reflection Model. The low-energy speckle reflection

model evolved through the work accomplished by Eden and Evans. The model makes no attempt

to simulate the detailed physical phenomena associated with the speckle return of the reflected

laser from the plume or hardbody. Rather, the model simulates the reflectivity information from

the hardbody speckle return which would be derived by speckle detection circuitry. This research

into the applicability of the Doppler return to discern the missile hardbody from the plume is a

continuation of the laser speckle reflection model and hardbody center-of-mass development by

Eden and Evans [5,6]. It is motivated by some shortcomings of speckle measurement information,

and the same perspective of modeling the information derivable from such measurements, rather

than the detailed phenomenology and physics of such measurements, shall be pursued.

The low-energy laser speckle reflection model simulates a measuremcnt to the one-state

center-of-mass Kalman filter for estimating the offset distance from the plume intensity centroid

along the vehicle's FLIR image plane velocity vector. The first attempt to model the laser speckle

return consisted of the hardbody designed as a rectangle with a binary-valued reflectivity function,

which provided a binary indication of the hardbody whenever successful interception by the laser

beam occurred [5]. With this model, speckle reflection information was equally obtained over the

entire vehicle. Thi* was followed by an enhanced, 3-dimensional, reflectivity model which

accounted for the realistic distribution of the laser speckle return according to the curvature and

aspect angle of the hardbody [6]. The 3-dimensional model is employed for this research since

the Doppler return is also a function of reflectivity [38,39,44]. The following subsections discuss

the development of Evans' 3-dimensional Hardbody Reflectivity Model and introduce the Plume

Reflectance Model.
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4.3.2.1 The Hardbody Reflectivity Model. The 3-dimensional reflectivity model was

developed by Evans [6] based upon his analysis of empirical data, shown in Figure 4.5, obtained

from the 6 585th Test Group, Holloman AFB, New Mexico [7]. The data illustrates the return

power (expressed in decibels-square meters) as a function of radar cross section (RCS) from a 20

x 249 inch cylinder with hemispherical endcaps as it was rotated longitundinally in the plane of

the radar source. (RCS is defined as the projected area of a metal sphere which would return the

same echo signal as the target, had the sphere been substituted for the target [38].) Note the peak

values at 90* and 2700, where the cylinder was orthogonal to the line of sight, and the sharp

dropoff in reflection as the angle deviates from that orthogonal condition. The reflectivity model,

shown relative to the FLIR image plane in Figure 4.6, modifies the previous rectangular model

to include 29 discrete-weighted line segments along the length of the model. Two functions

define the hardbody reflectivity model: the cross-sectional function and the longitudinal function.

Each discrete-weighted line represents a cross-sectional reflectivity function which

duplicates the data in Figure 4.5. The reflectivity function models the curvature by defining the

strength of the reflected signal at each discrete line, where the amplitude of the reflected signal

is highest along the missile centerlirie and discretely tapers towards the hardbody sides in 0.1

meter increments. The discrete implementation of the cross-sectional reflectivity function for the

simulation is shown in Figure 4.7. Note the peak reflection of the cross-sectional reflectivity

function's center is represented by an arbitrary value of 50 units of reflection magnitude [6]. The

remaining line segments are scaled according to the empirical data of Figure 4.5. The reflectivity

function also yields zero reflection for those portions of the original rectangle far from the missile

centerline, so the effective reflective area of the hardbody is less than that of the binary model.

4-27



SI t .. .....
"30

20 -...

10 - 20 4 1
-2 0

4 -0

180 210 240 270 300 330 0 30 60 90 120 150 180

Azimuth (degrees)

Figure 4.5 Empirical Radar Reflection Data of Cylinder [7]

The angle y, defined as the angle between the inertial velocity vector and the FLIR plane,

is utilized by the longitundinal reflectivity function to provide a scaling factor of the total

reflection function if the missile centerline is oriented other than normal to the FUR plane.

Similiar to the cross-sectional reflectivity function, the longitudinal function assigns a scaling

factor to the reflected signal based upon the angular aspect of the target velocity.

Another factor in determining the received speckle reflection is the sensitivity level of the

low-energy laser sensor. This sensitivity is represented in the simulation as a threshold limit

below which the low-energy laser sensor cannot detect the reflection return. To illustrate the

function of the sensor sensitivity factor, consider the hardbody at an aspect angle T, relative to the

FLIR image plane. In this orientation, the maximum amount of reflection is obtained in the
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Figure 4.6 3-d Hardbody Reflectivity Model Relative to FLIR Image Plane

simulation by multiplying the peak reflection value (50 units of magnitude) by an appropriate

scaling factor [6]. Let the sensor sensitivity factor be defined as some function of the threshold,

p('), and the resultant magnitude. of reflection be defined as m,. If (.) is less than m, the

reflective output is clipped to zero. Therefore, p(') represents the sensor's ability to discern a

target's return signal [6].

The total reflectivity function is given by [6]:

'I

RT p [AF(y)] (4-50)
i-I
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Figure 4.7 Discrete Implementation of Cross-Sectional Reflectivity Function [6]

where

R,-total reflectivity rece~ived by the low energy sensor

n =number of line segments crossed by laser scan

sensitivity threshold function of low-energy sensor:

jm, if nir : threshold
( ,) 0 if m, < threshold

A, F cross-sectional reflectivity function reflection amplitude of the 6 discrete

line segment

F(y) = longitudinal reflectivity function, where y is the angle between target v and

the cc-P plane
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As the hardhody traverses along its trajectory in 3-dimensional inertial space, the

projection of its motion onto the 2-dimensional FLIR image plane generates the corresponding

propagation of the first two states in the truth model. Similarly, to simulate the center-of-mass

measurements in terms of FUR plane variables, the hardbody model is also projected onto the 2-

dimensional FLIR plane. Referring to Figure 4.8, the geometry for projection is decribed by:

MLFUR = MLA'k,,acosY (4-51)

where

MLruR = FLIR plane projection of missile length

MLA,,, true missile length in pixels

ey
Inertial Frame Target Intensity

Centroid
V43i LOS

ex

ez • .................

(FLIRR

Fiue4ePoeto emer noFI mg ln
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y = angle between v, (velocity vector of the target) and the FLIR plane

Since the missile is cylindrical, the projection of the missile diameter onto the FLIR plane is equal

to its diameter. Once the projection is accomplished, the hardbody is located on the FLIR plane

by offsetting the hardbody's center from the truth model intensity centroid by MLFuR of Equation

(4-51) along the truth model velocity vector.

The subtended arc of the low-power laser beam is simulated as a rectangle with the

smaller side represented as the finite width of a dithered laser beam after it has traveled 2000

kilometers. Shown in Figure 4.9 are the ideal conditions for the laser scan. (Generally, the filter

estimates of the intensity centroid position, the orientation angle, and the velocity vector are not

equal to the truth model values.) One end of the long centerline of laser scan rectangle is located

at the estimated intensity centroid, positioned at the center of the FLIR FOV. Tlie other end of

the laser scan rectangle is taken as three times the truth model offset distance between the

intensity centroid and the hardbody center-of-mass (3 x 87.5 = 262.5 meters or 8.75 pixels) to

ensure the laser scan is long enough to intercept the hardbody, despite the effects of "pogo". The

second endpoint of the laser rectangle along its centerline is given as:

xP= X, + LcosO1  (4-52)

YP y, - LsinOf

where

xP, yP the FLIR plane coordinates of the second end of the centerline of the laser

rectangle

xc, y, = the FUR plane intensity centroid coordinates

L = length of the laser rectangle
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Figure 4.9 Ideal Low-Energy Laser Scan

f= six-state (FLIR) filter estimate of velocity orientation angle

As mentioned earlier, the FLIR filter's imprecise centering of the intensity centroid caused

inadequate hardbody illumination rates by the laser scan. (The estimated velocity vector, and thus

the estimated orientation angle, Of, were estimated precisely, however.) As a result, an ad hoc

sweep routine was developed, shown in Figure 4.10, that offsets the initial laser scan clockwise

from the estimated velocity vector. The laser scans are swept counterclockwise in order to assure

illumination of the entire body. Evans found that, without pogo, a 30" offset was required, and

35" with pogo applied [6].
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Figure 4.10 Sweep Technique of Laser Scan

4.3.2.2 Plume Reflectance Model. Prior to this research, the concept of illuminating the

missile hardbody with a low-energy laser and analyzing the speckle return (also called backscatter

radiation) was predicated upon the assumption that the missile plume would not possess any

backscatter properties or possess a speckle return similar to the hardbody's, when illuminated by

a low-energy laser. The laser scan travels along the intensity centroid's velocity vector until a

speckle return is received, signifying the start of the metallic hardbody. The scan continues along

the hardbody until no backscatter exists, signaling the end of the hardbody, and thus information

is provided to calculate the center-of-mass. However, recent experimental data confirms the
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presence of plume reflectance from solid-propellant rocket motors [2,30] which significantly alters

the previous conception.

Experimental programs at the Arnold Engineering and Development Center (AEDC), in

Tennessee, have observed and measured laser backscatter radiation from the exhaust plume of a

solid-propellant rocket motor [30]. The measurements of the plume's backscatter radiation were

found to be on the same order of magnitude and comparable to that of a hardbody [2], due to

aluminum particles and other substances in the plume. During the STARLAB flight experiment,

which collected plume data under actual flight conditions, a rocket booster and its exhaust plume

were "painted" by a low energy laser. Video recordings of the flight experiment showed the

randomized appearance and low-frequency oscillation of the plume's refectance [2,3]. The

existence nf plume reflectance creates an ambiguity that impedes the precision tracking necessary

to define the plume/lhardbody interface.

The purpose of the newly devised plume reflectance model is to simulate the prescnce of

plume backscatter radiation and its effect upon the offset measurement. Figure 4.11 depicts the

reflectance from both the plume and hardbody, as observed in the STARLAB Ilight experiment.

From the viewpoint of the speckle return sensor, the plume reflectance has the effect of elongating

the apparent missile hardbody. The plume reflectance model simulates the hardbody elongation

by applying a bias to the offset measurement in the direction of the elongation, defined as in the

opposite direction of the estimated velocity vector. In the simulation, the model first receives the

offset measurement as determined by the low-energy speckle reflection model. 'The biased

measurement, Xolftebl,,, is formed by converting the bias into pixels, projecting it onto the FLIR

plane, and subtracting it from the original offset measurement. The biased offset measurement is
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Figure 4.11 Biased Offset Measurement Caused by Plume Reflectance

then provided to the one-state center-of-mass filter for its update. The plume reflectance model

is given by:

XI•bI - (4-53)

where

Xo,•,= biased offset measurement due to plume speckle reflectance

X• =offset measurement from the low-energy reflectivity model, without plume

speckle reflectance effect

b = bias value

R = range
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k = - pixel proportionality constant (15 prads/pixel)

S= angle between 3-dimensional inertial space velocity vector and the FLIR

image plane

The randomized nature of the plume's reflectance is modeled as a percentage of time that

appearance of the bias occurs, A random number generator, of uniform density output, provides

the logic to turn the bias "on and off' according to the percentage selected. In correspondence

with Phillips Laboratory personnel, a bias of approximately 25-30 meters with an appearance

percentage of 90 - 95% was observed during the STARLAB flight experiment (3].

4.3.3 The Doppler Measurement Model. The Doppler measurement model simulates the

offset measurements that are obtained by exploiting the differences between hardbody and plume-

induced Doppler returns. As with the laser speckle return research of Eden and Evans, the

modeling of the actual physical properties of the Doppler phenomenon will not be attempted.

Instead, modeling efforts will entail simulating the information that would be available from

Doppler detection circuits as measurement data for the Kalman filter. The following subsections

briefly introduce and describe the basic concepts of the Doppler phenomenon, as applicable to the

properties of the hardbody and plume-induced Doppler returns. The treatment of the Doppler

phenomenon is not intended to be rigorous and reflects the level of understanding necessary to

appreciate the manner with which the Doppler returns are employed to generate an offset

measurement relative to the intensity centroid. For a rigorous development of the Doppler

phenomenon, the interested reader is referred to Principles and Practice of Laser-Doppler

Anemometry by Durst, F., A. Melling, and J. H. Whitelaw [4], and The Doppler Effect by Gill,

T. P. [9].
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4.3.3.1 The Doppler Effect. The Doppler effect has been well researched since Christian

J. Doppler published his work on the subject [9]. The phenomenon is employed in numerous

areas ranging from radar moving target indicators to police speeding traps and weather reporting.

Many define the Doppler effect as a shift in the frequency of a wave radiated, reflected, or

received by an object in motion [38,391. From a radar, Doppler shifts are produced by the relative

motion between the radar and the target. The radar may be a pulsed, coherent laser beam that

propagates the electromagnetic energy to "paint" the target of interest. If the target is in motion

and illuminated by a low-energy laser, the returned signal (or backscatter) is represented as a time-

delayed, Doppler-shifted version of the transmitted signal, wherein the amount Doppler shift is

proportional to the reflecting target's range rate relative to the laser transmitter [38,391. A

continous transmitted signal is given as:

E, = Ecos(2•ft) (4-54)

For this transnitted signal, the echo signal from a moving target will be [38]:

E = kEocos[2rn(f± .fd)t+4] (4-55)

where

E, = amplitude of transmitted signal

E, = reflected signal

k = an attenuation constant that represents losses incurred during propagation

fd Doppler frequency shift

to = transmitted frequency

4, = a phase shift, dependent upon the range of detection
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Figure 4.12 shows the frequency spectrum of the echo signal, shifted from the transmitted

frequency, fr, by the Doppler shift, fd, given by [381:

fd 2v - 2r ft (4-56)

where

v, = relative velocity of target with respect to transmitter

X = transmitted wavelength

c = velocity of propagation (3 x 10' m/s)

The relative velocity. v,, is expressed as:

v, = v siny (4-57)

Amplitude
Spectra of Received Signals

a) No Doppler Shift,

No Relative Motion
fo Frequency

fo

iL d b) Approaching Target

f - Frequency
to

c) Receding Target

- - Frequency

Figure 4.12 Spectra of Received Signals [38]
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where

v target velocity in 3-dimensional inertial space

y angle between the target trajectory and plane perpendicular

to the laser LOS (i.e., FLIR plane); see Figure 4,8

The plus sign associated with the Doppler frequency shift applies if the distance between target

and transmitter is decreasing (approaching target), and conversely, the minus sign applies if the

distance is increasing (receding target).

As shown in Figure 4.12, the frequency spectrum of a continous reflected sinusoidal signal

appears as a straight vertical line. The scenario proposed by the Phillips Laboratory calls for a

pulsed and coherent laser beam to illuminate a ballistic boosting target [3]. Both these laser

properties have an impact upon the nature of the returned spectrum.

For illustration purposes, Figure 4.13 shows a train of independent pulses having a pulse

width (PW) of 0.001 seconds and a constant pulse repetition frequency (PRF), along with its

associated frequency spectrum. Because the pulses are "on" a fraction of the time, the amplitude

of the frequency spectrum decreases but is still centered at f,. The total power is in fact

distributed over a band of frequencies extending from 1000 Hz below f, to 1000 Hz above it, for

a null-to-null bandwidth of 2 KHz. The bandwidth (i.e. spectrum spread), is inversely

proportional to the pulse width and is given by [39]:

BW 2 (4-58)

where

BW,, = null-to-null bandwidth

"-c = pulse width (sec)
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Figure 4.13 Pulsed Signal Frequency Spectrum [39]

By coherence is meant a consistency, or continuity, in the phase of a signal from one

pulse to the next [39]. The term 0 in Equation (4-55) represents the phase shift which is a

function of the range during detection. Figure 4,14 illustrates the difference between the

frequency spectrum of a coherent signal and a non-coherent signal. With non-coherent

tranmission, the signal's central spectral lobe is spread over a band of frequencies. In contrast,

the spectrum associated with coherent transmission shows the signal appearing at many points.

Its spectrum, in fact, consists of a series of evenly spaced lines, wherein the interval between the

spectral lines equals (lIPRIF [39]. Further comparison reveals that dte coherent frequency

spectrum is stronger (higher amplitude) than the non-coherent signal because the energy has been
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Figure 4.14 Spectra of Coherent and Non-Coherent Pulsed Signals [39]

concentrated into a few narrow lines. In addition, the envelope within which these lines fit has

the same shape ([sinx]/x]) and the same null-to-null BW (2/,c) as the spectrum of the non-coherent

signal.

4.3.3.2 Hardbody Doppler Return. At a range of 2000 kilometers, the missile hardbody

can be defined as a smooth, dense single point target. Any rotational motion of the hardbody

about its longitudinal axis is assumed much less than the hardbody's velocity, and is considered

negligible. It is futher assumed that the target hardbody's velocity remains constant over the

duration of a tranmitted pulse. With such a target, the spectrum of the return will have a
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bandwidth that closely approximates (2/,r), and centered about the Doppler-shifted frequency

corresponding to the range rate.

4.3.3.3 Plune Doppler Return. The case of the exhaust plume can be represented as the

situation where numerous point targets are imaged. The plume can be described as a randomly

distributed array of point targets which are dispersed in range and velocity. The plume

particulates are small (submicron in size), nonspherical and nonhomogeneous, and their size and

spatial distribution vary strongly with the radial distance from the plume axis [16,26,45].

Typically, larger particles are concentrated near the plume's symmery axis, and in contrast to the

hardbody, the numerous exhaust plume particles exhibit numerous velocity orientations over the

duration of a lasei pulse.

When the laser beam illuminates an infinite number of point targets, the superposition of

each particle's backscatter radiation within the laser beamwidth will form the resultant return

[44,45]. Thus, the Doppler frequency spectrum will be quite broad, due to the numerous Doppler

shifts of the numerous plume particlulate velocities [3,16,26]. This Doppler spreading of spectral

lines arises from the fact that backscatter from a particulate will be shifted in frequency in a

manner depending on the approach or recession of the particulate. The plume experimental

programs at AEDC have observed and measured plume Doppler reflectance frequency spectrums

with null-to-null BWs of 2 - 5 GHz [28]. This sharply contrasts the hardbody-induced return

whose spectrum null-to-null BW equals 2/i, with an order of magnitude in MHz. However, one

other significant difference exists between the hardbody and plume-induced Doppler returns.

Generally, the velocity of the plume will be oriented 180 degrees from the hardbody's

velocity [3,16,26]. This is shown in Figure 4.15(a), where the respective Doppler frequency shifts
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Figure 4.15 Spectra of Plume and Hardbody-Induced Doppler Returns

will always be opposite in sign. A majority of the observed plume particles would have a relative

radial velocity towards the tracker and the resultant return would have a aiegative Doppler

fiequency shift. Conversely, the hardbody as shown is receding from the tracker and wiA thus

exhibit a positive Doppler frequency shift. Hence, by exploiting the two differences in plume and

hardbody-induced Doppler returns, precise tracking and definition of the plume/hardbody interface

can be realized.

However, the angle y, of which the relative velocity Vr is a function. has an impact upon

the discernibility between the plume and the hardbody-induced Doppler shifts. Referring to

Equation (4-57), as y approaches 00, where the plume and hardbody velocity vectors become
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orthogonal to the LOS vector, the radial velocity relative to the tracker approaches nil and no

Doppler shift is produced. Figure 4.15(b) shows that, under these circumstances, the return

spectra of the plume and hardbody converge towards the transmitted frequency and eventually

overlap, obscuring most of the hardbody-induced Doppler return. This imperfect ability to detect

the hardbody spectrum, as distinct from the plume spectrum, will be addressed in the next section

which develops the Doppler measurement model.

The measurement modeling approach taken by this thesis is to consider the Doppler return

of the hardbody significantly distinctive from that of the plume. The Doppler detector must be

designed to filter out the broader plume return and only pass the hardbody return, a function

achievable with a Doppler matched filter design [26,38]. This vital concept signifies that the

Doppler truth measurement model can neglect the plume's Doppler return and solely simulate the

hardbody-induced Doppler return. Although there may be instances of no apparent distinction

between the plume and hardbody spectra, these occurrences will be embodied in a probability-of-

miss parameter (Pm), to be discussed later.

Since Doppler information is obtainable from backscatter radiation, which includes the

speckle return [38,39], the 3-d hardbody reflectivity model is utilized in this modeling approach.

However, in contrast to the laser speckle return measurement model, the biasing effect caused by

the plume's reflectance is no longer applicable and is not incorporated in the Doppler

measurement model. As a result, the center-of-mass measurement and offset measurement

generated by the Doppler measurement model will simulate the true offset measurement, Xoffe, for

the one-state filter (or two-state filter to estimate both offset and bias in the speckle measurement,

if both types of measurements are used).
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4.3.3.4 Doppler Measurement Noises. In a study sponsored by the Phillips Laboratory,

Dr. Paul McManamon investigated feasible and implementable wavelengths to illuminate the

plume and hardbody, while meeting the space tracking scenario requirements [163. His choice of

wavelengths, based upon ranges, power requirements, hardbody temperatures, and tracking

accuracies, range -from 0.53 to 15 pim. For this study, the following wavelengths were selected

*for a sensitivity analysis: 0.53, 1.06, 2.01, 4.00, 6.00, 8.00, and 10.5 Pm. The tracking

inaccuracies associated with these wavelengths are adopted in the Doppler measurement model

to corrupt the offset measurements realistically.

The tracking accuracy for a laser beam is a function of the amount of power, or

amplitude, of the return signal. The return signal, in turn, is dependent upon several variables,

among which are the target's radar cross section (RCS) and the location of the target in the laser

beam [16,38,39]. A target ideally located in the center of the laser beam reflects the maximum

return signal (i.e., optimum SNR). If the target falls off to the side of the beam's center, then less

energy hits the target. The degree of tracking accuracy then becomes a question of, how far off

to the side can a target be to reflect the signal at an acceptable level?

Dr. McManamon addresses this issue [16] by first defining the acceptable beam diffraction

limit as the angle within the 3db power points of the laser beam. He defines the diffraction limit

as:

03b = 1.08- (4-59)

d

where

0
3db half angle defined from beam center to half-power points, in radians
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X = wavelength, in meters

d = radar aperture, in meters

One then determines the acceptable level of signal loss within the 0 3dh limits. In Dr.

McManamon's assessment, a 10% loss can be tolerated, and he determined that this loss is

reflected by decreasing the diffraction limit by a factor of 2.667 [16]. Equation (4-53) becomes:

03db (4-60)

" 2.667

where

0, = allowed diffraction limit for 10% signal loss

The measurement noise for the Doppler Measurement Model thus consists of the tracking

angle errors, in pixels, as a function of the diffraction limited beam and acceptable signal-to-noise

ratio (SNR). Inasmuch as SNR is a design parameter, this study includes the following values of

SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship is given as [16,26]:

OT = B 1 (4-61)3 ýSNRk,

where

OT = rms tracking angle errors in pixels

% = = beam diffraction limit

SNR = signal-to-noise ratio

kp = pixel proportionality constant, 15 prads/pixel

4-47



In addition to providing the offset measurement, the Doppler measurement model also

simulates a return signal probability-of-miss, P,, The probability-of-miss encompasses two cases:

first, the probability-of-miss takes into account the situation in which the hardbody is illuminated

by the low-energy laser, but the return is not detected due to attenuation of the returning signal

as it propagates the 2000 kilometer range, beam-bending as a result of atmospheric distortions (the

intended location of the laser scan should have illuminated the target, but bending of the beam

resulted in no intersection with the target); or due to signal losses (i.e., high sensor sensitivity

threshold; refer to Section 4.3.2. 1) within the receiving equipment. Secondly, in Equation (4-5 1),

it was shown that the relative velocity is a function of y, such that no Doppler shift occurs if the

target's velocity is normal to the transmitter's LOS. Hence, as shown in Figure 4.15, as y

approaches 00, both the broadened plume-induced Doppler spectrum and hardbody-induced

spectrum will converge and overlap. The two spectra will become more indistinguishable, perhaps

rendering detection of the hardbody's Doppler return impossible.

The simulation of the probability-of-miss is similiar to the technique employed by the

plume reflectance model. A random number geneiator, with a uniformly distributed output, also

provides the logic to turn the hardbody laser backscatter "on and off." Figure 4.16 shows the

detection characteristic for a known signal. The graph present a set of parametric curves that give

the probability-of-detection, Pd, as functions of peak signal-to-noise ratio (SNR) for various values

of probability-of-false alarm, Pf,. Pfa is defined as falsely indicating the presence of a return signal

when none exists [138]. Both Pd and Prf are specified by the system requirements; the radar

designer computes the probability-of-false alarm and, from Figure 4.16, determines the minimum

detectable signal. A range of 70 - 99 percent probability-of-detection is representative of current

Doppler detection equipment capabilities with the tracking scenario [26]. Since Pm = (1.0 - Pd),
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a performance sensitivity analysis will be performed for probability-of-miss values of 0.0, 0.01,

0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30.

4.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model parameters

used in the simulation, The purpose of this section is to provide a consolidated listing of the

parameters and initial conditions of the truth model.

4.4.1 Target Trajectory Initial Conditions. The initial conditions of the target inertial

position, velocity, and velocity vector orientation angle, 0, are as follows:

e, = 27,000 meters

ey = 100,000 meters

ex = 2,000,000 meters

vX = .2500 meters/sec

vy = 4330 meters/sec

v••= 0 meters/sec

0 = 60o

4.4.2 Target Model, Dimensions, and Orientation. The target plume consists of a

crescent-shaped intensity function formed from the difference of two bivariate Gaussian intensity

functions. Each Gaussian function is modeled with elliptical constant-intensity loci with an aspect

ratio of 1.5, and a semi-minor axis of one. For this thesis, Evans' 3-dimensional reflectivity

model is used to model the hardbody. The hardbody length is 40 meters (1.33 pixels) and 3

meters (0.1 pixels) wide. The offset distance of the hardbody center-of-mass from the intensity

centroid is 87.5 meters (2.92 pixels), a carryover from the previous thesis. For the simulation, the
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intensity centroid and the hardbody longitudinal axis are aligned with the velocity vector, and the

hardbody has zero sideslip and zero angle-of-attack.

4.4.3 Intensity Functions. The two Gaussian bivariate intensity functions are, centered

at 65 and 110 meters behind the missile. Each intensity function has a maximum intensity value

of 20 intensity units.

4.4.4 Atmospheric Jitter. The variance and mean squared value for the atmospheric jitter

in both FLIR directions is 0.2 pixels2.

4.4.5 Bending/Vibration. From Equation (4-29), the values for the second-order

bending/vibration model are as follows:

Kb = 5 X 10-11 rad4/sec4

S= 0.15

0) = b n rad/sec

4.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30 times the

diameter of the missile at the altitudes of interest. The values below represent values of pogo

oscillation as determined in previous research [35].

pogo oscillation = 0.1 - 10 Hz (nominal is 1 Hz)

pogo rms = 33.6 meters (1.12 pixels)

4.4.7 Spatially Correlated Background Noise. The rms value of v,,, the summed effect

of the spatially correlated background noise bjk and the FLIR sensor Poise njk, of Equation (4-45),

equals one. This produces a SNR of 20.
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4.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-energy scan

is represented as a rectangle at the hardbody target. The scan length is 262.5 meters (8,73 pixels),

which is three times the true model center-of-mass offset distance, and the scan width is 0.1

meters. The measurement noise associated with the speckle return was obtained by taking 1% of

the hardbody's length, and converting to pixels, giving a variance of 0.000178 pixels' [6].

4.4.9 Plume Reflectance Model. From correspondence with Phillips Laboratory personnel

[3], the bias utilized by the plume reflectance model is approximately 25 - 30 meters and appears

90 - 95% while the plume is illuminated during the boost phase. For the simulation, nominal

values for the bias and rate of appearance are set at 25 meters and 90%, respectively.

4.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler measurement

noise rms tracking errors are functions of wavelength, radar aperature, and SNR. From Dr.

McManamon's study [16] and with agreement from the Phillips Laboratory, the wavelength values

of .53pm, 1.06 pm, 2.Olpm, 4pim, 61pm, 8pm, and 10.51am, with SNR values of 10, 8, 6, and 4.

and Pm values of 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30 are utilized in a sensitivity

analysis. The radar aperature (d of Equation (5-29) of .5 meters is used as a constant.

4.4.11 Hardbody Refleclivity Measurement Model. The function P('), in Equation (4-50),

represents the sensitivity threshold of the low-energy laser return sensor. The threshold must be

less than the magnitude of reflection, m, (scaled according to the aspect angle y), to detect the

return from the hardbody. In the simulation, the value of the threshold is set to 0.0.
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4.5 Summary

This chapter presented the mathematical description of the truth model. The truth model

consists of 14 states: 2 deterministic target trajectory states, 6 stochastic atmospheric jitter states,

four stochastic bending/vibration states, and two stochastic pogo states. The infrared target plume

model is formed from the difference of two bivariate Gaussian functions. The FLIR

measurements are corrupted by spatially and temporally uncorrelated FLIR sensor noise, and

spatially correlated and temporally uncorrelated background noise. The low-energy measurement

models, which provide an offset measurement from the intensity centroid to the hardbody center-

of-mass, consist of the plume reflectance model, the 3-dimensional hardbody reflectivity model,

and the Doppler measurement model. The plume reflectance model simulates the elongation of

the apparent hardbody in the speckle measurement data due to the simultaneous hardbody and

plume speckle return. The 3-dimensional hardbody reflectivity model provides realistic

backscatter that is a function of the hardbody's curvature and aspect angle. The Doppler

measurement model also utilizes the backscatter information from the 3-dimensional relectivity

model and corrupts that information with rms angle tracking errors associated with a particular

wavelength, radar aperature, and SNR.
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V. Filter Models

5.1 Introduction

The Kalman filter dynamics model is a reduced-order and simplified version of the truth

model. The decrease in the number of states results in a more viable and implementable filter

algorithm when computational processing time and memory storage may be. limited. However,

the state reduction must be accomplished in a purposeful manner such that the dominant behavior

of the truth model is preserved.

For this research, the FUR filter receives measurements from the FLIR sensor to update

its state estimates, and subsequently propagates these estimates to the next sample time. Since the

FLIR filter's one-sample-period-ahead predictions are used as commands for the FLUR sensor

controller to center the target on the FLIR image plane at the next measurement sample time, the

accuracy and reliability of the FLIR filter's state estimates are essential to maintain lock on the

target plume and to track it precisely..

This chapter discusses the four linear Kalman filters utilized for this study. First, a six-

state FUR filter, a development from previous theses [5,35], uses an enhanced correlator [36] to

process FLIR measurements. The six-state FLIR filter presented here also defines an elemental

Kalman filter within the MMAF structure (Chapter II). Second is a one-state filter that estimates

the hardbody center-of-mass location relative to the target IR image center of intensity. A low-

energy laser is scanned along the FUR filter's estimated velocity vector from the estimated center
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of intensity and the received speckle return is used to generate an offset measurement from the

target plume intensity centroid to the hardbody center-of-mass, to be used as the input

measurement for this second filter [5,6]. Third is a one-state center-of-mass filter that similarly

uses a low-energy laser scan, but instead receives measurements processed from the Doppler

return of the plume and the hardbody. Fourth is an alternative to either of the two previous filters:

a two-state center-of-mass filter, in a modified MAP MMAF structure, that utilizes the offset

measurements generated from both the speckle and the Doppler returns. The latter two filters are

relevant to the primary objectives of this thesis. Presented in the following sections are the

dynamics and measurement models for each filter, as well as the enhanced correlator algorithm.

5.2 Six-State FUR Filter

This study and the two previous theses on locating and tracking the missile hardbody [5,6]

all employ the six-state FLIR filter that has been developed by AFIT students over thirteen yeas

of research [i,1,27,29,35,36]. The filter consists of two target plume position states, two target

plume velocity states, and two atmospheric jitter position states. A six-state FLIR filter as such

provides estimates for the plume intensity centroid's position and velocity, separated from the

atmospheric jitter effects. The resulting estimates are used to track and maintain lock on the target

plume, arid additionally to define the origin and orientation of the low-energy scan. The following

subsections cover the FLIR filter dynamics model and the FLIR measurement model.

5.2.1 Dynamics Model. The six-state FLIR Kalman filter is based upon the state vector:
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X1  xd
X2 Yd

X V (5-1)

X5  X
L x6 J Ly,-

where

x. -- x component of centroid position (azimuth), relative to center of FOV

Yd = y component of centroid position (elevation), relative to center of FOV

VJ = x component of centroid velocity

vy = y component of centroid velocity

x,, - x component of atmospheric jitter

y,, = y component of atmospheric jitter

Each state in Equation (5-1) is coordinatized in the a-P (FLIR) plane of Section 3.2.3.1. The

target velocity is represented as an exponentially time-correlated first order Gauss-Markov process

[5,351. A comparison between the filter model presented here and the fourteen-state truth model

earlier described in Section 4.2 reveals the extent of state reduction. Note that the atmospheric

jitter model has been reduced from the six states defined in the truth model in Section 4.2.2 to

two states. The effect of the higher frequency double pole in each FLIR axis direction was

negligible and was intentionally disregarded to reduce the filter order [33]. Furthermore, the

bending/vibration states defined in Section 4.2.3 are similarly excluded since past research found

no significant degradation in filter performance without these states [121. Lastly, the pogo states

defined in Section 4.2.4 are not at all modeled in the filter for this research.
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The following time-invariant, linear stochastic differential equation describes the six-state

FLIR filter model:

•Q = Ff X(t) + Gfw1t) (5-2)

where

Ft = 6 x 6 time-invariant system matrix

x(t) W -= 6-dimensional filter state vector

Gf = 6 x 4 time-invariant noise distribution matrix

w,(t) = 4-dimensional, white Gaussian noise process with independent components,

and mean and covariance kernel statistics:

E w1 (t)l = 0

E~wf(t)wfT(t - -c)} Qf6(t)

The time-invariant system matrix IF is given by:

0 0 1 0 0 0

O 0 0 1 0 0

0 0 0 0 0
1

0- o o 0 0 0 (0-4)
ýy

0 0 0 0 - 0 0

"T.a
0 0 0 0 0

The noise distribution matrix G, is:
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"0 0 0 0

0 0 0 0

1 0 0 0 (-5)
f 0 1 0 0

0 0 1 0

L0 0 0 1

The strength of the white Gaussian noise w., given by Q2, is:

2o•i 0 0 0
•x

22
0 2% 0 0

"f -T(5-6)

Qs -- 2 o 20 0 0

0 0 0 2q"Y 2

"la,

where

',r, ry = correlation times for the intensity centroid x and y velocities

'c,, , y = correlation time for the atmospheric jitter process in the x and y directions

X2, a2 = variance and mean-squared value for the intensity centroid x and y velocities

a,2x••, oay variance and mean-squared value for the atmospheric jitter position process

The filter state estimate and error covariance matrix are propagated forward to the next

measurement update using the following discrete-time filter propagation equations [17]:

k~f(t,- 1) -- (IF/(A t)kf(t ) (5-7)
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P,(t 1-) = 4,t(At)Pt,( )(Dt(At) + QI (5-8)

where

2I (t) = filter estimate of the 6-dimensional state vector

O r(At) = 6 x 6 time-invariant state transition matrix for propagation over the sample

period: At = tj + I - tj

Pf(t) = 6 x 6 filter covariance matrix

(t0 = time instant before FUR measurement is incorporated into the estimate at

time t,

(t,) time instant after FLIR measurement is incorporated into the estimate at

time t,

Qq 6 x 6 filter dynamics noise covariance given by:

11.'

Qdf = t QfG f f,(t,.I-,r)dc (5-9)

The time invariant state transition matrix Of (At) is given by:

1 0 4D13 0 0 0

0 1 0 D24 0 0

* ( 0 0 F33 0 0 0 (5-10)

0 0 0 (D44 0 0

0 0 0 0 (55 0

0 0 0 0 0 4)

where
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013 ý X [i - e p -

4'24 = 'y - exp ý.YK I

0l 44 -exp

05= exp

Om=exp

The filter dynamn;.ý noise covariance Qdf is given by:

qdfll 0 qdf13 0 0 0

o qdf22  0 qf40 0

qd3 0 df3 0 0 0 (-2

0 qdf42  0 qdf44 0 0

0 0 0 0 q df55 0

0 0 0 0 0 f6

where
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q I t) - 2,c,, exp1 + exp(-i-!

qdf 2 = 2aý2tr (At) - 2',c[ exp i!j ] +~ [Y ex{p~ ~1

qdf13 = 2c { 2-c_ [1 exp '- [I)~ Y[ - exp[2At ]

y 2,cy exi! (A 1) - expL 2("(5-13)

qdf 1 qdf13

qdfý3 cs a' 1 -exL2(t
1

qdf42 - qdf24

2x F2 At))

qdfII =0 .L exp( J
qf%= (Y.[i - exp 2(- iJ

2 
At))

The propagated intensity centroid position estimates i(t 1)and i~2 (t,,,) are applied as

control signals to the FUR pointing controller (Section 3.4). These estimates prescribe the

required change in azimuth and elevation that tile FLUR pointing controller should execute over

the next sample period to center the hotspot image on the FLUR FOV plane at the next

measurement sample time.
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5.2.2 FLIR Measurement Model. Measurements of the intensity centroid's position are

generated by an enhanced correlator algorithm, shown in Figure 5.1, developed by Rogers [36].

Unlike the standard correlator tracker that correlates the current FLIR data frame with the previous

data frame, this enhanced correlator algorithm correlates the current FLIR data frame with a

template -ihat represents an estimate of the target plume's intensity function. "Psuedo-

measurements" of the centroid's position offsets are produced by this correlator; they are linear

in the states of the filter, and this tracker therefore uses a linear Kalman filter. The following

discussion of the processes within the enhanced correlator algorithm that are used to treat the

FLIR sensor data is reproduced from the previous thesis [6] with some modifications.

Template Generation
----------- ---------------------------------------- ------------------

upae Suite Estimate

X (ti +)

8x8 F Negating ExponentialInput •'•T• Phase Smoothing Template

Array T Shift of Data

Image A One Sample

Correlation h x ([), tj Period Image
-d rStorage

_. __ Kalman Filter 1tA- l To FLIR/Ler
X Pi(t+1) CoFLtroller

Results of Y =ydti +1)
Propagation

Figure 5.1 Linear Kalman Filter/Enhanced Correlator Algorithm
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5.2.2.1 Enhanced Correlator Algorithm. The algorithm presented here was developed as

an alternative to an earlier 64-dimensional, non-linear measurement model of Equation (4-39).

Previously, an extended Kalman filter processed raw FLIR measurement data from a standard

FLIR sensor, with no correlation algorithm utilized at all [27]. With the enhanced correlator

algorithm, a linear Kalman filter is employed since the output measurements from the correlation

algorithm are 2-dimensional position measurements that are linear functions of the states to be

estimated. This configuration outperformed the extended Kalman filter and further provided a

reduction in computational loading. The "enhancement" occurs in the following manner [36]:

1. The most current FLIR data is correlated with a template (which is an estimate of the

target's intensity function), instead of with the previous FLIR data frame.

2. Instead of outputting the peak of the correlation function, a technique known as

"thresholding" is used along with a simple center-of-mass computation. The enhanced

correlator outputs the center-of-mass of the portion of the correlation function that is

greater than some predetermined lower bound. Consequently, the enhanced correlator

has no difficulty distinguishing global peaks from local peaks, as do many conventional

"peak-finding" correlation algorithms.

3. The FLI/lfaser pointIng commands are generated via the Kalman filter propagation cycle

instead of by the "raw measurement" output of a standard correlation algoritlun.

5. The Kalman filter estimate, iJ(tj+), is used to center the template, so that the offsets seen

in the enhanced correlator algorithm should be smaller than those visible in the
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conventional correlator. This increases the amount of "overlap" between the actual FLIR

data and the stored template, and thus improves performance.

Referring back to Figure 5.1, the enhanced correlation algorithm uses the 8 x 8 array of

target intensities obtained by the FLIR measurement, to establish a 64-element shape function

from the target plume intensity profile (Section 4.3.1). The intensity functions are centered on

the FLIR plane by translational shifts using centroid offset estimates from i(t,+), using the "shifting

property" of the Fourier Transform, where negating phase shifts are applied in the spatial

frequency domain to accomplish a translational shift in the original domain. Rather than perform

the difficult correlation in the time domain, the Fourier domain allows one to apply

straightforward multiplication to implement the "translational shift" of the intensity functions and

eventual correlation with the template. Exponential smoothing is then used to average the result

with previously centered images to yield an updated template. The current FLIR data is then

correlated against the template of the previously stored shape function that has been centered on

the FLIR image plane. The outputs of the algorithm are two linear offsets, x, and y, as shown in

Equations (4-1) and (4-2), that yield the highest correlation of the current data with the template.

These "pseudo-measurements" are then fed to the linear FLIR Kalman filter for its update. The

filter provides the updated estimate, i(t,+), u:;ed to center the FLIR intensity profile to be included

in the templae generation for the next measurement.

5.2.2.2 Template Generation. The template reconstructs the shape, size, and location of

the intensity centroid using the ra.w noise-corrupted FLIR measurements. The template generation

begins with an input of a FLIR frame of data to the enhanced correlator algorithm of Figure 5.1.

Using the "shifting" property of the fast Fourier transform (FFT), which states that a translational
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shift in the spatial domain is equivalent to a linear phase shift in the frequency domain, the phase

shift is computed by:

F{g(x - x,,,, y - yhp)I = G(f,, f,)exp{-j2n(f, . xh,, + fy , 81) (5-14)

where

F(.} = Fourier transform operator

g(x,y) = 2-dimensional spatial data array

G( f f) = {g(xy)}

f, fy = spatial frequencies

The Fourier transform is implemented in the simulation software using the Cooley-Tukey

algorithm [36]. The target plume intensity shape function is "centered on the FLIR plane" by

phase shifting the transformed function an amount equal to:

Xo•/•(t) = -d(tf) + -a(t) (5-15)

y,,Mf(t = MOt + Ya(ti)

where •, , Sd, I,, , P, are the state estimates defined in Equation (5-1). Once the data is centered

on the FLIR plane, it is incorporated into an updated template for the next sample period. In the

simulation, the Kalman filter's first update cycle is bypassed to form the initial template.

The template is generated by averaging the N most recent centered intensity functions

observed by the FUR sensor. The averaging process tends to accentuate the target intensity

function and attenuate the corrupting background and FLIR noises. The memory size N is chosen

according to how rapidly the shape functions change, i.e., highly dynamic intensity functions
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require small values of N, while slowly varying functions use large N values. Typically, a true

finite memory averager would require a large computer memory [18]. However, the enhanced

correlator algorithm circumvents the memory storage issue by incorporating an "exponential

smoothing" technique to approximate the averaging. This technique has properties similar to finite

memory averaging, but with the advantage of requiring only the storage of a single FLIR frame

of data, The template is maintained by the exponential smoothing algorithm given by:

1 -- 16

(t') = -- t) + (1 - y~I(t,_) (5.16)

where

l(t,) '"smoothed estimate" (template) of the target's intensity function

1(t,) = "raw" intensity function from the current FUR data frame

y = smoothing constant: 0 -- y • 1

The smoothing constant y is comparable to the value selected for N. From Equation (5-16), it can

be seen that large values of y emphasize the current data frame and correspond to small values

of N. Based on previous studies [14,40], a smoothing constant of ,y = 0.1 is used for this thesis,

A reinitialization algorithm is used once after the first ten sample periods (although it

could be called periodically thereafter as well, in actual implementation), Once the template is

computed, its centroid is calculated and shifted to the center of field of view for the template, thus

eliminating any biases. It is this template which is now stored and correlated with the next FLIR

data to produce the "pseudo-measurements."

5.2.2.3 "Pseudo-Measurements". The template serves as the best estimate of the shape

of the target plume intensity function prior to receiving a new FLUR data frame. The cross-
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correlation of the incoming FUR data with the template provides the position offsets from the

center of the FOV to the centroid of the target intensity image. The cross-correlation is computed

by taking the inverse fast Fourier transform (IFFT) of the equation [36]:

Ffg(x,y) * I(x,y)ý = G(f.,fy)L'(f, f)) (5-17)

where

F{ . Fourier transform operator

g(x,y) = measured target intensity function of the current FLIR data frame

I(xy) = expected target plume intensity function (i.e., template)

g(x,y) * I(xy) = cross-correlation of g(x,y) and I(x,y)

G(f, fy ) = Flg(xy)}

"'(f, fy) = complex conjugate of F{1 (x,y)}

After the IFT is accomplished, the values of the correlation function, g(x,y) * I(x,y), are modified

such that any value less than 0.3 of the function's maximum value is set to zero [14,32]. This

"thresholding" technique is used to eliminate false peaks in the correlation function that occur due

to noise and other effects. As shown earlier in Figure 5.1, the output of the image correlation is

the offset of the "thresholded" FLIR intensity centroid from the center of the FLIR FOV. This

offset is assumed to be the result of the summed effects of target dynamics, atmospheric jitter, and

measurement noise. The x- and y-components of the offsets are the pseudo-measurements

provided to the FLMI Kalman filter, and are expressed in temis of Equation (5-1) as:

Xfve, = Xd + Xa + Vfl (5-18)

Yofl = Yd + Y. + Vf 2
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These two measurements can be represented in state form as:

z(tQ) = Hfx (t1 ) + vP(ti) (5-19)

where

Z0t1) -= I x.&P,(t), Yqpdt, ot) IT

Hf = 2 x 6 measurement matrix

x,(t,) = state vector of Equation (5-1)

v1 (ti) = 2-dimensional, discrete-time, white Gaussian measurement

noise with statistics:

E~v(tv)} - 0

_ R t,{ t 
(5 -2 0 )

E v~,)vrts) 0 t, *tj

The FUR measurement matrix Hf is given by:

Hf 1 0 0 0 1 0 (5-21)fs- 0 10 00 1

The measurement noise v1(t1) represents the combined corrupting effects of the spatially correlated

background noise, the FLIR sensor noise (Section 4.3.1), and the errors due to the FFTIIFFI"

processes. The covariance matrix Rf (with units of pixels') associated with this error is given by

[10,29,36]:

5Wil5



0.00363 0 (5-22)
R [ 0 0.00598

Since the pseudo-measurements are linear, a linear Kalman filter is utilized where the

update cycle is defined by the equations [17]:

K(t-) - Pf(t, )H! [HfPf(t[ )HT + Rf]-1

.if (t,') - If Q7) K(t,) [z(t,) - H Ief (t17)] (5-23)

. f (tjý) -- Pf (t)-K( t)fP ()

where

K() = 6- K 2 filter gain matrix

Pf(t) --- 6 x 6 filter covariance matrix

Hf = 2 x 6 measurement matrix; Equation (5-21)

Rf = 2 x 2 measurement noise covariance matrix; Equation (5-22)

If(tR) = 6-dimensional estimated state vector; Equation (5-1)

z(t,) = 2-dimensional measurement vector; Equation (5-19)

(ti) = time instant immediately before measurements are incorporated at

time t4

(t4k) = time instant immediately after measurements are incorporated at

time t4

5.2.3 Filter Parameters. This section provides a consolidated reference of the parameters

used in the simulation. Presented below are definitions of the modeling parameters, initial

conditions, and tuning parameters for the six-state FLIR filter employed in this research.
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5.2.3.1 Modeling Values. The filter target dynamics correlation time constants - and z,

in Section 5.2,1, are both equal to 8.5 seconds and represent a missile target with benign

dynamics. The atmospheric correlation time constants cr, and ca, are bott set equal to 0.0707

seconds in the simulation [61.

5.2.3.2 Initial Conditions. Since initial acquisition characteristics of thc FLIR filter

have been explored in the past [41], emphasi, is placed upon the tracking problem, rather than

aquisition and tracking. Thus, taken from previous research [5,6], the filter is artificially

initialized to zero error for the position and velocity states of Equation (5-1). The position states

x, and x2 are initialized with the target plume intensity centroid centered in the FLIR FOV. The

velocity states x3 and x4 are initialized in accordance with the target's initial trajectory conditions

as defined in Section 4.5.1. Both atmospheric states x5 and x6 are initialized to zero.

The initial state covariance matrix P(t0) is:

10 0 0 0 0 0

0 10 C' 0 0 0

P 0 0 2000 0 0 0 (5-24)

0 0 0 2000 0 0

0 0 0 0 .2 0

0 0 0 0 0 .2

where the units of the covariance associated with the position states x, and x2 and the atmospheric

st-tes x5 and x, are pixels 2, and those of the velocity states x3 and x4 are expressed in

pixels'/seconds 2 [6].
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The measurement covariance matrix R, was established empirically in past research

[23,36]. Rf (with units of pixels2)is given by:

R 0.00363 0 ] (5-25)R-- 0 0.00598

5.2.33 Tuning Values. Both filter dynamic variances a2 and cy2, in Section 5.2.1, are

equal to 800 pixels2/seconds2 with or without plume pogo applied to the intensity centroid. Both

atmospheric variances a.2 and a,"2 are equal to 0.2 pixels2 in a%!cordance with the truth model

(Section 4.4.4) [6].

5.3 Hardbody Center-of-Mass Filters

Parallel to the two previous theses [5,6], thi. primary objective of this research is the

precise tracking of the missile hardbody and determination of its cer,ter-of-mass location. 7r,.I

basic premise underlying the dynamics modeling efforts is that the center-of-mass is located at an

offset distance relative to the intensity centroid. The offset distance is oriented angularly using

the FLIR filter estimated intensity centroid's velocity in the FLUR image plane [5]. Figure 5.2

illustrates the geometry of estimating the offset distance and tie dependence of the center-of-mass

filters upon the FLIR filter's estimates of the position and velocity of the intensity centroid. (Note

that Figure 5.2 depicts the ideal situation; in general, the filter estimates of the centroid position,

velocity, and the orientation angle are not equal to the truth model values.) Originating at the

intensity centroid's estimated position, a low-energy laser is scanned along the estimated velocity

vector. The reflections of the low-energy scan generate a measurement of the offset distance, to

be utilized as aimpoint information for the high-energy laser.
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Low-Energy vt vf"FUR Laser Scan

True and Filter-EFtimated
Center-of-Mass

True and Flt er Estimate
of Offset D tance -

-3-d }{ardbody Rectangle

True Location arid
Filter Estimate of
Intensity Centroid

S•+X FLIR

Figure 5.2 Filter Estimate of Offset Distance (ideal Conditions)

Except for the dependence upon the FLIR filter's estimated intensity centroid position and

velocity, the center-of-mass filters function autonomously; the FLIR filter has no knowl dge of

the existence of the center-of-mass filter. Eden [5] developed a one-state center-of-mass filter that

processed measurements derived from the speckle return of the plume/hard body interface. Evans

[6] followed with an eight-state filter, composed of the six-state FUR filter augmented with two

states that represent the x and y components of the offset distance. Again, the augmented partition

of the eight-state filter is independent of the FLIR partition, ex'ept for its reliance on information

regarding the intensity centroid's position and velocity vector. Evans comparrA the performance

of the hardbody center-of-mass (stimates between the eight-state filter and the six-state FLIR/one-
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state center-of-mass filter configuration and found that both performed equally well. He

concluded the one-state center-of-mass filter performs sufficiently well for the given benign

trajectory and has the advantage of requiring less computer processing time [6].

This thesis differs from Eden's and Evans' work by using the Doppler return, instead of

the speckle return, of the low-energy scan to discern the plume/hardbody interface. This approach

is driven by the need for a more meticulous discrimination of the plume/hardbody interface since

there is evidence of speckle return emanating from the plume of a solid-propellant rocket due to

the presence of aluminum and other metallic particulates (Section 4.3.2.2). Measurements of the

plume's speckle return were determined to be on the same orler of magnitude as that of the

hardbody [2,34] and, under these conditions, the precise definition of the plume/hardbody interface

becomes ambiguous and degrades the ability to locate the hardbody center-of-mass. Eden's one-

state filter, that processes measurements of the offset distance as derived from the laser speckle

return, is evaluated to determine the extent of performance degradation caused by the plume's

reflectance (this phenomenon was not simulated in either Eden's or Evans' work).

To investigate the feasibility of employing Doppler returns, two center.of-mass filter

configurations are utilized in this study. First, the identical dynamics model of Eden's one-state

filter will be used to process measurements of the offset distance as acquired 1;om the plthme and

hardbody-induced Doppler returns. Second, a two-state center-ot-mass filter in a modified

Maximum a Posteriori (MAP) Multiple Model Adaptive Filter (MMAF) structure is developed to

accept measurements generated from both laser speckle and Doppler returns.
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The following subsections begin by presenting the dynamics of the one-state filter and

includes separate discussions on the speckle and Doppler measurement models. Next, the two-

state MAP MMAF center-of-mass filter that employs both measurement models is described.

5.3.1 One-State Center-of-Mass Filter Dynamics Model. The offset between the intensity

centroid and the hardbody center-of-mass is represented as a bias. This bias is modeled as a

simple integrator, with driving pseudo-noise for filter tuning purposes. The single-state

representation of the linear, time-invariant, stochastic differential equation is given by:

If = Ffx,(t) + GOf w(t) (5-26)

where

F,= 0

xf(t) state representing offset distance between missile center-of-mass and FLIR

image plane intensity centroid

Gf• time-invariant noise distribution matrix, equal to unity

w = white Gaussian noise process, independent of the noise processes of the

six-state filter, with mean and covariance kernel statistics:

E(w1 Qt)! = 0(5-27)

E.wr(t)wf(&f + r)) = afb(C)

"The scalar discrete-time representation of the filter propagation Equations (5-7) and (5-8)

is:

•t I)f(A r(t') (5-28)

Pf(tI-.1) = (D f(At)Pf(t 1-)4DfT(At) + Qaf (5-29)

where
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.ft(td) filter estimate of the 1-dimensional state vector

'f(A) = time-invariant state transition matrix, equal to unity, for propagation over

the sample period: At = ti 1 - tj

Pf (t) = 1 x 1 filter covariance matrix

(t0) - time instant before FUR measurement is incorporated into the estimate at

time t,

(t,+) = time instant after FLIR muasurement is incorporated into the estimate at

time t,

Qdf = filter dynamics noise variance given by:

I,'
f(I) , T T

Qdf -- (ti I-,r) Gf Q tGf o(tfQ. ,-c) dt (3-30)

where Qdr = QAt since G = (P - 1. The transpuses that appear in Equations (5-29) and (5-30)

are not really necessary since all quanities are scalar, but they are retained for convenience.

5.3.1.1 Speckle Reflectance Measurement Model. This model is included in this study

to observe the effects caused by thr low-energy laser speckle return of the plume (Section 4.3.2.2)

upon the center-of-mass estimates. If the speckle reflection of both the hardbody and plume is

received by a low-energy laser sensor, a noise corrupted measurement of the offset distance,

further biased by the plume's reflectance, is provided to the one-state filter (Equation (4-47)). The

discrete-time measurement model is given by:

z(t,) = H.xt(t,) + v1(t,) (5-31)

where

z(t) biased measurement of the offset distance (Equation (4-47))

HN = measurement matiix, equal to unity

5-22



x.(t1) = center-of-mass offset state

vf (t) discrete-time, white Gaussian measurement noise with
statistics:

Efv(tl)} - 0

Elv(tQ)v(t1 )ý = (5-32)

where R, - R, (true measurement variance) = 0.000178 pixels2 (Section 4.4.8) [6].

5.3.1.2 Doppler Measurement Model. In contrast with the speckle measurement model,

this model provides a measurement based upon the low-energy laser Doppler return of the

hardbody. The significant dissimilarities between the plume and hardbody-induced Doppler

returns can be exploited to discern the plume/hardbody interface (Section 4.3.3.2) precisely, and

provide information regarding the location of the hardbody. The low-energy laser measurement

is provided to the one-state filter whenever the laser intercepts the hardbody, and the hardbody-

induced (and plume-induced) Doppler return is received by Doppler return sensor equipment. The

resulting measurement to be provided to the filter is a noise-corrupted offset distance between the

FLIR filter's estimate of the intensity centroid and the computed center-of-mass. The discrete-

time measurement model is given by:

z(t,) = H x.(t,) + v,(ti) (5-33)

where

z(t,) - measurement of the offset distance

H = = measurement matrix, equal to unity

xf(ti) = center-of-mass offset state
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v, (t,) w discrete-time, white Gaussian measurement noise with
statistics:

E-v(t,)} - 0

E~vR1 %) t, = t (5-34)Ejv(tt)v(t,)ý -- 0 t, 0 tj

where R1 = R, (true Doppler measurement variance), a function of low-energy laser wavelength,

radar aperture, and signal-to-noise ratio (Section 4.3.3.4). Since both measurement models are

linear, the one-state filter processes the measurements using a linear update cycle defined by the

scaler version of Equation (5-23).

5.3.2 Two-State Modified MAP MMAF. For this research, a 2-state modified MAP

MMAF structure is developed to capitalize on both the speckle and Doppler reflections of the low-

energy laser scan. There are three advantages to this endeavor: first, this filter benefits from both

measurements, and all available information regarding the location of the hardbody's center-of-

mass is provided to the filter at each update cycle. Second, as the hardbody's aspect angle y

approaches 00 (normal to the Doppler transmitter's LOS), the plume-induced Doppler spectrum

converges with that of the hardbody (as in Figure 4.14), rendering detection of the hardbody-

induced Doppler return difficult (Section 4.3.3.2). Nevertheless, the low-energy laser speckle

returns continue to provide measurements under these conditions, and can compensate for the

temporary loss of Doppler information. Third, should either the speckle return or Doppler return

sensing circuitry/equipment malfunction, the availability of both measurements establishes a level

of redundancy that ensures the tracking system remains operational, albeit with some degradation

in performance.
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Figure 5.3 Two-State Modified MAP MMAF Structure

Figure 5.3 shows the modified MAP MMAF structure with a decision block followed by

two elemental filters. Each elemental filter is composed of two states: one state that represents

the offset distance from the FLIR image intensity centroid to the hardbody's center-of-mass; and

one state that represents the bias caused by the plume's speckle reflectance (Section 4.3.2.2). The

role of the decision block is to ascertain the presence of the hardbody-induced Doppler return in

the measurements for each sample time. If the hardbody Doppler return is detectable, the

measurements are provided to the two elemental filters that are based upon two hypothesis: 1) the

bias caused by the plume's speckle reflectance exists in the measurement, and 2) the bias does not

exist in the measurement.

5-25



The two hypotheses capture the intermittent appearance of the plume's speckle reflectance.

As mentioned in Section 4.3.2.2, the plume's speckle reflectance was observed to occur 90% of

the time during the boost phase, which implies that the bias is not included in the speckle

measurement 10% of the time. To validate either hypothesis, the residuals of the elemental filters

are monitored and compared to each other. The state estimate associated with the "best" residual

(meaning the smaller of the two) would have the highest probability of being associated with the

correct hypothesis, and thus of being the optimal state estimate for the given sample time.

The estimation process could have been handled as well by a Bayesian MMAF, in which

the state vector estimate of each elemental filter is weighed appropriately using a hypothesis

conditional probability to produce the state estimate, !,t), as a probabilistically weighted sum

(Section 2.3). Nonetheless, it was felt that the respective residuals would be sufficient and

distinctive enough to verify their respective hypotheses, and the appropriate $:,, /(t) would be

selected. In addition, the modified MAP MMAF is simple, requires minimal computational

processing, and is therefore easy to implement. Hence, a decision was made to pursue the

modified MAP MMAF structure [20].

If the hardbody-induced Doppler return is not detectable, the measurement is provided to

the elemental filter based upon the first hypothesis. This allows the speckle return measurement

to continue when the hardbody Doppler return ceases to be distinct from the plume's (Section

4.3.3.2) and a Doppler return measurement cannot be generated. With the first hypothesis, it is

anticipated that the bias would exist in the speckle return measurements, due to the high rate of

appearance of the plume's speckle reflectance. This bias is not separately observable based only

on speckle measurements, so the most recent bias estimate is retained until such time that Doppler
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measurements resume. The following subsections discuss the 2-state modified MAP MMAF

dynamics model, and measurement model, and it also covers the adaptive algorithm.

5.3.2.1 Two-State Dynamics Model. The two states, one offset distance state and one bias

state, are each represented as the output of simple integrators driven by white Gaussian pseudo-

noise for tuning purposes. The linear, time-invariant, stochastic differential equation for this

model is given by:

I•- FIx(t) + G wf(1) (5-35)

where

F• = 0

x.(t) = 2-dimensional state vector

Gf = 2 x 2 time-invariant noise distribution matrix equal to I

w. (t) = 2-dimensional independent, white Gaussian noise process with mean and

covariance statistics:

E lwf (t)l = 0 (5-36)

E4w,(t)w T(t + -r) = Qf6(-)

The time-invaiant, discrete-time representation of the filter propagation Equations (5-7)

and (3-8) is:

(l -l(At). 1 (tt) (5-37)

Pf(t,-.j) = 11(At)Pf(t, )4)r(At) + Qf (5-38)

where

£:(t) -- =modified MAP MMAF estimate of the 2-dimensional state vector
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4Z)f(At) = 2 x 2 time-invariant state transition matrix, equal to I, for propagation over

the sample period: At = t4 + I - tj

P (t,) = 2 x 2 filter covariance matrix

(t") - time instant before measurement is incorporated into the estimate at time t,

(t1+) = time instant after measurement is incorporated into the estimate at time 1,

Qdf = filter dynamics noise covariance given by:

t1.1

Qdf -- frt, -')~,~~4~td(5-39)

where Q df-= QfAt since Gf = c(i 1.

5.3.2.2 Measurement Model. When the low-energy laser intercepts the hardbody, noise-

corrupted measurements derived from both Doppler return and speckle return are provided to the

two-state modified MAP MMAF. While the Doppler return provides measurements of the offset

distance from the FLIR image irtensity centroid to the hardbody-of-mass, the measurements

acquired from the speckle return generally consist of the offset distance with the bias caused by

the plume's speckle reflectance.

Let s denote a vector of uncertain parameters in the measurement. The discrete-time

measurement model is given by:

z(t1) = H(s)fXf (Q) + vf(t 1) (5-40)

where

z(t1) = 2-dimensional hardbody center-of-mass measurement

H(s)1  = 2 x 2 measurement distribution matrix

xf (t) = 2-dimensional state vector
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vf(t•) 2 x 2 discrete-time, white Gaussian measurement noise with

statistics:

E{v(t 1)} = 0

R• ti " tl (5-41)

E~v(t 1)vT(t0)} = { , ; t)

The measurement distribution matrix, H(s),, is given by:

HHs) = '~] (5-42)H (s)r . ..........Se I ( - 2
1 0 -

where

H.peckle M 1 x 2 partition, adaptively configured according to the presumed quality of

the scalar speckle measurement

Figure 5.4 diagrams the algorithm for adaptively defining the HekI, partition and shows

two paths that branch from the "Detectable Hardbody Doppler Return" decision block. Each path

corresponds to the two events mentioned earlier - the intermittent nature of the plume's speckle

reflectance (right path), and the loss of hardbody-induced Doppler returns (left path). The right

path of the algorithm is contingent upon two hypotheses: 1) the bias caused by the plume's

speckle reflectance exists, and 2) the bias does not exist. The right path of the algorithm operates

sequentially in the following manner:
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Figure 5.4 Modified MAP MMAF Algorithm

1. Under the first hypothesis, the measurement is provided to the filter according to the

model:

zf(t,) = Hi(s)f x!(t) + Vf (5-43)

The discrete-time, scalar representation of Equation (543) is given by:

ZrI,( ..- ...... L . ]k : ; (t,) v" (5-44)

where

zf, (t,) = noise-corrupted sneckle return measurement

z2 (t1) = noise-corrupted Doppler return measurement
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x,, (t,) - center-of-mass offset distance state

xp (t,) - bias state

v,, (t,) = discrete, white Gaussian measurement noise associated with

the speckle measurement

v,,(t,) = discrete, white Gaussian measurement noise associated with

the Doppler measurement

Note that the HaP,,,,J partition is shown as [ 1 -1 ] to signify the bias caused by the

plume's speckle reflectance is in the opposite direction of the hardbody's velocity vector.

The residual, r,, is then calculated as [17]:

r1(t1) = z (t1) - H(s1).R (t[ ) (5-45)

where

r, = residual formed from the elemental filter based on the first

hypothesis

2. Similarly, the measurement is provided simul'•aneously to the elemental filter under the

second hypothesis (that no bias exists in the measurement) according to the following

model:

Zf(t) = H(s2) Xf(t 1 ) + vf (5-46)

The detailed representation of Equation (5-46) is given by:

f _(t1) [. ] ....... 0 O1xfl(ti) (547)

z12(t,) 1 0 xf2 (i,) J
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with the HuI,Emk, partition shown as [ 1 0 1. The residual, r2, is then calculated as:

r2(t1) = Zf(t) - H(s2)ff(1[) (5-48)

where

r, = residual formed in the elemental filter based on the second

hyputhesis

3. Each residual r, is a 2-dimensional vector with the first scalar component directly

associated with the hypothesis testing. The detailed representation of Equation (5-48) for

the residual, r,, is given by:

Zr 2(I F 0

where the component r, is given by:

r,1(t) = z11(t1) -- HHnkf (t[) (5-50)

Thus, the scalar components r,, of the residuals r, and -2 are compared, whereby the

"best" residual (i.e., the smaller of the two rj components) determines which associated

elemental filter has the highest probability to provide the correct state estimate at a given

time.

The left path of the elgorithm allows the reception of speckle return measurements to

continue during the loss of distinct hardbody Doppler returns. The measurement is provided to

the elemental filter based upon the first hypothesis with the assumption that the measurement
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contains the bias. Thus, th3 HpCk,, partition is configured as [1 -1] to accept the speckle return

measurement of the offset distance, assuming that it has the bias.

5.3.3 Filter Parameters. In the preceeding discussions, parameters w'-re introduced for

the filter dynamics and measurement models. This section consolidates and defines the initial

conditions and tuning parameters for the hardbody center-of-mass filters used in this research.

5.3.3.1 One-State Filter with Speckle Return Measurements: Initial Conditions. Based

on previous research [5,61, the offset distance from the FLIR image intensity centroid to the

hardbody center-of-mass is initialized to one pixel. The initial state variance P(t,) is t,.qual to 0.2

pixels2, and the measurement variance is equal to the true measurement variance, 0.00178 pixels 2.

5.3.3.2 One-State Filter with ,Speckle Return Measurements: Tuning Values. From Evans

[6], the filter dynamics noise variance Qdf is equal to 0.7 pixels2.

5.3.3.3 One-State Filter with Doppler Return Measurements: Initial Conditions. The

values of the initial offset distance and initial state variance, P(t0 ), are carried forward from Evan's

thesis: 1 pixel and 0.2 pixels2, respectively [6]. The measurement variance, Rf, is equal to the true

measurement variance and is a function of the low-energy laser wavelength, SNR, and aperture

diameter of the transmitter (Section 4.3.3.4). The filter measurement variance is given by:

0 12
R = R, = '"(5-51)

where

Rf = filter measurement variance

R, = true measurement variance
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0B = beam diffraction limit (Equation (4-54))

kP = pixel proportionality constant, 15 prads/pixel (Section 4.2.1)

SNR = signal-to-noise ratio

5.3.3.4 One-Stat.. Filter with Doppler Return Measurements: Tuning Values. The filter

dynamics noise variance Qdf is equal to 0.7 pixels2, based upon Evans' research (6].

5.3.3.5 Two-State Modifled MAP MMAF: Initial Conditions. The initial offset distance

is retained at one pixel, and the initial bias is again set at on( pixel. Thus, the initial states x(t1)

is given by:

[1 (t 1.0] (5-52)xft)-1.0

The initial state covariance matrix, P(t), is given as:

P(to) = [0.2 C'1 (5-53)
0.0 0.2

with units of pixels2. The measurement variance matrix, Rf, is given by:

Ef 0.00178 0.0 1 (5-54)
o.o R1 2 J

where R, 2 is equal to the Doppler measurement variance of Equation (5-49).
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5.3.3.6 Two-State Modified MAP MMAF: Tuning Values. The performance plots that

resulted from tuning the two-state modified MAP MMAF are shown in Appendix D. For the

initial tuning values, the filter dynamics noise variances were set equal to the values mentioned

in Sections 5.3.3.2 and 5.3.3.4 for each one-state filter. The covarian, e of the discrete-time white

Gaussian dynamics driving noise, given by Q1,, is:

[dl 0.0 -. (5

S. 0 (5-55)
0.0 qdf22

where

qapi = offset dynamics noise variance

qdf22 = bias dynamics noise variance

From Figure D.1, it can be seen that these original tuning valutes were overly conservative. The

variances were gradually decreased by an order of maguitude until the overall time histories of

actual rms errors and the filter computed rms error matched well [17]. Table 5.1 lists the statistics

Table 5.1 Two-S,,te Modified MAP MMAF Tuning Statistics

True Error True Error True Error True Error

qdfJI qdJ22 Mean(t1 ) Mean(t1 ÷) l 1 (tI ) 10, o(0t0)

0.7 0.7 0.33329E-4 -0.18450E-4 0.14906E+0 0.32113E-2

0.07 0.07 0.33747E-4 -0.18576E-4 0.14905E+0 0.32121E-2

0.007 0.0007 0.35241E-4 -0.18108E-4 0.14897E+0 0.31975E-2

0.01 0.001 0.34722E-4 -0.i7817E-4 0.14900E+0 0.31980E-2

0.03 0.001 0.33822E-4 -0.18678E-4 0.14904E+0 0.31945E-2
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that were achieved from 5 sets of tuning values. Decreasing the dynamics noise strengths qa,,

and qd22 produced negligible differences in performance; however, the last entry was chosen based

upon its performance plot in Figure D.25.

From Equation (5-54), the two-state modified MAP MMAF dynamics noise covadiance

Qd, in units of pixels2, is given by:

Qdf 0.03 0.0 (5-56)

0.0 0.001

5.4 Summary

Four linear Kalman filters are used for this research to investigate the feasibility of

employing measurements derived from low-energy laser reflections to locate and track the missile

hardbody center-of-mass, The previously developed six-state FLIR filter [5,8,10,11,12,14,27,29,

32,33,35,36, 37,40,41] processes "pseudo-measurements" from an enhanced correlator algorithm

and produces position and velocity estimates of the FLIR image target plume intensity centroid.

The position and velocity estimates provide the reference position and angular orientation for the

low-energy scan. The one-state center-of-mass filter [5] that receives measurements from the low-

energy speckle returns, is examined to analyze the effects caused by the speckle reflectance of a

solid-propellant motor's exhaust plume. This study adopts the one-state center-of-mass filter's

dynamics model to receive the alternative Doppler return measurements. A two-state center-of-

mass modified MAP MMAF is developed to capitalize on the available speckle and Doppler

returns. The two-state modified MAP MMAF yields several advantages over using just Doppler
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(or just speckle) measurements: the use of all available measutement information, compensation

for the loss of hardbody-induced Doppler returns by using speckle returns, and measurement

redundancy in the event of speckle or Doppler sensor equipment failure.
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VI. Procedures and Results

6.1 Introduction

This chapter presents the results of carrying out the research objectives cited in Chapter

I. The individual performances of two configurations of hardbody center-of-mass Doppler return

filters (the one-state and the two-state Modified MAP MMAF respectively) is evaluated by

conducting a sensitivity analysis with respect to three parameters (see Sections 4.3.3.4 and 4.4.10):

low-energy laser wavelength, signal-to-noise ratio (SNR), and probability-of-miss (P, ), Each

filter is subjected to all the possible combinations of all the respective variations of these three

parameters.

Time allotted did not allow the pursuit of two secondary objectives since the sensitivity

analysis generated a vast amount of data. Thus the alternative scan techniques are not explored,

nor is the implementation of the pogo phenomenon achieved. All simulation runs, however,

employ Evans [6] 3-dimensional hardbody model along with the laser sweep routine, as described

in Section 4.3.2.1.

Each simulation run consists of 10 Monte Carlo runs over a 10 second period of the

target's trajectory. The collection of the statistics of the actual errors (mean and standard

deviation) and the filter-computed error standard deviation is given in Appendix A. Performance

plots, statistical results, and tabular data are presented in the appendices, and are referred to

throughout this chapter. Note that, in the plots of Appendices C, D, E, and F, the cotiection of

the error statistics begin at the second sample time. The purpose for the one-sample delay is to
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form the template for the enhanced correlator algorithm with the first set of FLIR data (Section

5.2.2.2). Consequently, most of the plots exhibit no initial transient behavior that would result

from the initial conditions given to the center-of-mass filters (Sections 5.3.3.1, 5.3.3., and 5.3.3.5

define the initial conditions). However, depending on the circumstances imposed by the values

of wavelength, SNR, and P,, other plots may display an initial non-zero mean error; these are the

cases that exhibit slower initial transients. This is seen to occur particularly in Appendix F. For

practical purposes, only the performance plots for a selected parameter set which adequately

illustrate significant trends are contained in the appendices. Similarly, the tabular data shown in

this chapter are not all inclusive. However, the statistical results and tables in the appendices

reflect all data gathered for this research. A description and explanation of the statistical plots can

be found in Appendix B.

The analysis and performance evaluation of all the center-of.mass filters is based upon

their behavior and sensitivity to changes in the parameters. The performance indicators are the

RMS errors obtained at t, and t,÷. For time t,, the RMS error is calculated as:

e•2 (6-1)
ERMS(ti) - ) a(t,) +a0)

where

ERMs(t,) = RMS error

e(t,) = mean error

o0 (t1 ) = error standard deviation

However, the mean errors t- and t, of the upcoming tabular data are insignificant as compared

to the l values and would therefore have negligible impact upon the RMS error calculations.
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Thus, the standard deviaticas at II" and t,÷ can therefore become gauges of the trends in the RMS

errors. Furthermore, the error standard deviations at t, are deemed critical since they describe how

well the filter propagates its offset distance estimates, which are used as control signals for the

FLIR sensor controller (Section 3.4): these ultimately determine the tracker pointing accuracy.

The following sections discuss the results of each filter used for this study. The one-state

center-of-mass filter with only speckle return measurements is first evaluated to observe the effects

from the plume's speckle reflectance. The subsequent sections discuss the results and trends

observed from the sensitivity analysis accomplished on both the one-state center-of-mass filter

with Doppler return measurements and the two-state center-of-mass modified MAP MMAF using

both speckle and Doppler return measurements. Finally, the resulting error statistics are compiled

in order to compare the two Doppler filters' performances.

6.2 One-State Filter with Speckle Return Measurements

As mentioned in Section 4.3.2.2, the plume's speckle reflectance was observed to cause

an offset bias aftward of about 25-30 meters, appearing 90 - 95% of the time iil the measurements.

For the simulation, the nominal values for the bias and appearance rate were set at 25 meters

(equal to 0.833 pixels) and 90%, respectively. It was anticipated that the additional bias would be

apparent in the errors. The filter error statistics (in units of pixels and meters) are shown in Table

6.1, and the statistical plots are shown in Figures 6.1 through 6.3. Although Table 6.1 presents

5 significant figures, in actuality, the first 3 digits are significant. The values shown represent the

time-averaged statistics over ten Monte Carlo runs. (This is also true of Tables 6.4 through 6.7,

and the tables in Appendix H.) Note, in Table 6.1, the substantial increase of the 1o values, in

meters, over a propagation sample period. Figure 6.1 shows tile true rms errors versus the filter
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Table 6.1 Offset Distance Statistics of One-State Speckle Return Filter

Offset distance mean(t[) - mean(ti") 1 o(t/) 1 a(t1 ÷)

pixels -0.7489 -0.7499 0.26857 0 .19545

meters -22.467 -22.497 8.0571 5.8635

computed rms errors, while Figures 6.2 and 6.3 show the true mean errors . the error standard

deviations. (Plots, such as in Figure 6.1, are included to demonstrate that good tuning is achieved,

whereas plots such as those in Figures 6.2 and 6.3 show the resulting performance of the filter.

A further explanation of the plot symbology is given in Appendix B.) The results do show an

inclination of the filter's offset measurements towards the bias. Attempts to tune the filter by

increasing the dynamics driving noise strength had no significant impact upon the performance.

Figure 6.3 shows that the 90% occurrence rate of bias due to plume speckle produced interesting

results in the offset errors at t,+. Note, that if the bias were to occur 100% of the time, the plots

of Figures 6.2 and 6.3 would exhibit a mean error of .833 pixels (25 meters). Each of the

unbiased measurements (occurring 10% of the time) causes a quantized jump in mean and la,

where the quantization is directly attributed to using a 10-run Monte Carlo analysis, i.e., the

quantizations correspond to 0 "good" measurements out of 10 runs of measurements for each t,;

1 "good" out of 10; 2 "good" out of 10, etc.

6.3 One-State Filter with Doppler Return Measurements

The primary purpose of this study was directed by the testing of the one-state filter that

is provided with Doppler return measurements of the offset distance rather than speckle return
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Figure 6.3. One-State Speckle Return Filter Biased Offset Error at t,+

measurements. The filter is analyzed with variations in three parameters that influenced the

quality of the Doppler return measurements. Table 6.2 lists the three parameters and their

variations that are explored. Although the dynamics model for the one-state filter is identical to

what was developed by Eden [5] and Evans [6], a fundamental difference between the speckle

return and Doppler return is the variance associated with the measurement noise. Referring to

Section 4.3.3.4 and Equations (4-53) through (4-55), Table 6.3 lists the assorted measurement

noise variances associated with given values of wavelength and SNR. In comparison with the

speckle return measurement noise variance equal to 0.000178 pixels2 [6], the shortest wavelength

exhibits an order of magnitude decrease in the values of measurement noise, especially with the

higher values of SNR. Furthermore, a significantly more precise measurement should be
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Table 6.2 Values of Parameter Variations

SNR P_.

0.53 pm 10 0.00

1.06 pmn 8 0.01

2.01 pm 6 0.02

4.00 pm 4 0.03

6.00 pm 0.04

8.00 pm 0.05

10.5 pm 0.10

0.20

0.30

Table 6.3 Measurement Noise Variances for Transmitted Wavelength and SNR

A SNR Measurement Noise Variance, pixels 2

0.53 pm 10 0,0000091

4 0.0000227

2.01 pm 10 0.0001308

4 0.0003272

10,5 pm 10 0.0035700

4 0.0089280
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realizable for a SNR of 4 with a wavelength of 0.53 mim. Thus, at the shorter wavelengths,

improved error statistics, as compared to the one-state speckle return filter, were expected using

Doppler return mea&surements. However, it remained to be seen how much impact the probability-

of-miss parameter would have upon the filter's estimates.

The statistical performance plots for the one-state filter are contained in Appendix C. To

limit the size of the appendices, only a chosen set of plots (identified with wavelengths 0.53 pm,

2.01 pm, and 10.5 pm; SNRs 10 and 4; and P, of 0.0, 0.05, and 0.30) are shown to illustrate the

significant statistical trends.

In general, the plots show that the filter's performance is relatively stable through all

variations of parameters. The filter obviously becomes less efficient and attains higher RMS

errors as , increases or SNR decreases (which result in an increase in the measurement noise

variance). However, the average of the offset errors consistently converge about zero mean: note

that the mean is consistently much smaller than the standard deviation. Following the variations

in Pý, shows that the filter tolerates the intermittent absence of Doppler return measurements and

performs well for P, up to 0.05. Figures C.1.5, C.2.5, C.3.5, C.4.5, C.5.5, and C.6.5 show

negligible differences in the offset error mean * Ico values at t1 for P, equal to 0.05. Figures

C.1.6, C.2.6, C.3.6, C.4.6 depict the offset errors mean ± Io values at f," and show how the filter

recovers quickly when a measurement is received. It is noted that, as P, increases, the plots of

the offset error mean ± Ia at t1*. do exhibit less efficiency, implying a sensitivity to variations of

P.. This is illustrated by comparing Figures C.1.I, C.1.2, and C.1.3 with Figures C.!.4 through

C. 1.9. Note that the plots in the latter group of figures. show large transients, while plots in the

first group, (associated with P,, equal to zero) do not. The cause of these transients is therefore
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attributet to the combination of the initial condition (set arbitrarily to 1 pixel) and the absence of

measurements, averaged over the ten Monte Carlo runs.

At t;, the filter's performance remains consistent, as opposed to the sensitivity of the error

standard deviations at time ti÷ to parameter variations; this indicates that the filter's propagated

estimates maintain a degree of insensitivity to variations within the parameter set. This

insensitivity of the standard deviation at t, can be attributed to the propagation errors which

dominate the performance characteristics. Table 6.4 lists a subset of the error statistics for the

one-state Doppler return filter. One can examine the mean errors at t[ and t,÷ and notice their

erratic pe,-formance (although still centered about zero mean, i.e., of much smaller magnitude than

the standard deviation) in contrast to the systematic behavior of the Ic values at t[" and tj+. It is

apparent that the ia values at t, are relatively stable, whereas those at tI+ increase with increasing

X and P.m, and decreasing SNR. To compare the one-state Doppler filter to the one-state speckle

return filter of the previous thesis, Table 6.5 lists the error statistics Evans [61 achieved without

including the effects of the plume' speckle reflectance. Clearly, with the shorter wavelengths, the

one-state Doppler return filter achieved better values of la at t[ throughout the SNR and Pm

range as compared to the one-state speckle return filter. Furthermore, the one-state Doppler filter

performance is undoubtedly superior when Table 6.4 is also compared with Table 6.1, which

properly reflects the impact of the plume speckle bias on the one-state speckle filter (whereas

Table 6.5 artificially does not).
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Table 6.4 One-State Doppler Filter Error Statistics (in Pixels)

X.11 P.m[SR[P mean~t,-) mean((,-) loft[-) IoGt•+)

.53 10 0.0 -.30391E-4 .15079E-3 .14402E+0 .28674E-2

.01 .13520E-3 .14715E-2 .14436E+0 .12484E-1

.02 -.55185E-3 .16988E-2 .14479F+0 .18428E-1

.03 -. 85223E-3 .94931E-3 .14461E+0 .29420E-1

.04 -.44544E-3 .85601E-4 .14509E+0 .36668E-1

.05 .27581E-3 .64996E-3 .14478E+0 .39320E-1

.10 .44882E-3 .50387E-3 .14477E+0 .70834E-1

.20 .31482E-2 .39645E-2 .14495E+O .1 1249E+0

.30 .30750E-2 .32894E-2 .14520E+0 .12629E+0

4 0.0 .51095E-4 .23792E-3 .14399E+0 .45304E-2

.01 -.68101E-4 .15506E-2 .14437E+0 .14030E-1

.02 -.48477E-3 .17917E-2 .14485E+0 .19918E-1

.03 -.78556E-3 .10110E-2 .14457E+O .30657E-1

.04 -.58538E-3 .14446E-3 .14507E+0 .37841E-1

.05 .46723E-5 .38337E-3 .14528E+0 .43738E-1

.10 .49465E-3 .53090E-3 .14477E40 .71501E-1

.20 .31985E-2 .40154E-2 .14501E+0 .11270E+0

.30 .31100E-2 .33113E-2 .14521E4- .12634E+O

2.01 10 0.0 .36007E-3 .56858E-3 .14399E+0 .10843E-1

.01 .18846E-3 .18493E-2 .14439E+0 .19898E-1

.02 -.23438E-3 .21442E-2 .14510 E+ .25584E-1

.03 -.53112E-3 .12396E-2 .14440E+0 .35400E- 1

.04 -. 14913E-3 .37758E-3 .14500M .42347E-1

.05 .30485E-3 .65790E-3 .14549E+0 .47879E-1

.10 .66959E-3 .64378E-3 .14476E+0 .74103E-1

.20 .33901E-2 .42120E-2 .14529E+0 .11359E+O

.30 .32428E-2 .33960E-2 .14528E+O .12665E-40
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S,pm1 SNR P.l mean(t) mean(t,+) la(t,') 1o(t1÷)

4 0.0 .66680E-3 .89720E-3 .14401E+0 .17082E-1

.01 .44352E-3 .21331E-2 .J4444E+_ .25713E-1

.02 .17095E-4 .24826E-2 .14535E+0 .31197E-1

.03 -.27951E-3 .14609E-2 .14426E+0 .40153E-1

.04 .92439E-4 .60917E,-3 .14495E+0 .46868E-1

.05 .60920E-3 .93585E-3 .14569E+0 .52037E-1

.10 .84940E-3 .77198E-3 .14478E+O .76803E-1

.20 .35800E-2 .44078E-2 .14560E+0 .1 1463E+0

.30 .33720E-2 .34791E-2 .14543E+O .12712E+0

10.5 10 0.0 .26115E-2 .29295E-2 .14534E+0 .53274E-1

.01 .20358E-2 .36996E-2 .14583E+0 .59557E-1

.02 .16022E-2 .43570E-2 .14770E+0 .63928E-1

.03 .13037E-2 .27672E-2 .14480E+0 .69595E-1

.04 .16703E-2 .20807E-2 .14594E+O .74279E-1

.05 .25731E-2 .27723F-2 .14776E+O .77298E-1

.10 .20497E-2 .18295E-2 .14653E+0 .95123E-1

.20 .47999E-2 .57305E-2 .14890E+0 .12380E+0

.30 .42102E-2 .41334E-2 .14854E+O .13309E+0

4 0.0 .42651E-2 .45982E-2 .14876E+O .78044E-1

.01 .33884E-2 .48892E-2 .14910E+0 .82539E-1

.02 .29406E-2 .57096E-2 .15147E+0 .86402E-1

.03 .26006E-2 .38282E-2 .14766E,- .88773E-1

.04 .30215E-2 .32559E-2 .14908E+O .94020E-1

.05 .42458E-2 .43537E-2 .15119E+O .95596E-1

.10 .30541E-2 .28026E-2 .15063E+0 .11036E+0

.20 .53285E-2 .69039E-2 .15386,-+O .13345E+O

.30 .4993 1E-2 .48497E-2 .15375E+0 .14073E+0

o-11



Table 6.5 One-State Speckle Return Filter Statistics Without Plume Reflectance (in Pixels) [6]

mean (t[) mean (t,+) Io (ta ) Qa (tQ)

0.67629E-3 0.66146E-3 0.14964 0.12666E-I

6.4 Two-State Modified MAP MMAF

The algorithm for the two-state Modified MAP MMAF allows the speckle return

measurements to be taken every sample period, to aid the estimation process especially

wheneverthe hardbody-induced Doppler return becomes undetectable (Section 5.3.2). The

circumstances that cause an indistinguishable hardbody-induced Doppler return are embodied in

the probability-of-miss (Pm ) parameter. However, there is a second category of events that

requires investigation, namely, the instances where the low-energy laser return is not received

(either due to bending or attenuation of the returning signal as it propagates the 2000 km range,

or due to signal losses within the receiving equipment). Consequently, under these conditions,

neither speckle nor Doppler return measurements are generated and the filter merely continues to

propagate its most recent estimates.

To accommodate the two preceding categories, the sensitivity analysis for the two-state

Modified MAP MMAF is conducted under two case conditions. Case I enzompasses the

complete loss of the low-energy laser return signal and neither measurement is provided at the

specific sample time. In Case 2, the speckle return measurements are provided continuously

during instances of undetectable hardbody-induced Doppler return. Appendices E and F contain

the respective statistical plots for Cases 1 and 2, respectively. For a given set of parameters, the

plots portray the filter's performance in estimating the offset distance state and the bias state
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caused by the plume's speckle reflectance. The plots of the bias estimation errors are included

simply for completeness. The discussion and comparison of filter performance focuses upon the

offset estimation errors, which are of importance to this research.

6.4.1 Case 1: The Loss of Both Returns. As mentioned in Section 5.3.2, the

measurements provided to the two-state Modified MAP MMAF generally consist of the hardbody-

induced Doppler return and the hardbody-induced speckle return which is biased 90% of the time

by the plume's speckle reflectance. This case not only considers the loss of both returns, but also

provides the opportunity to observe the effectiveness of the filter's adaptiveness once the

measurements resume (Section 5.3.2.2), i.e., the estimate associated with the filter which provides

the "best" residual is selected as being most the most probabilistically correct for the given sample

time.

The plots in Appendix E reveal those instances in which the filter produced the wrong

estimate. Such is the case in Figure E.1.3. where the lo values at t,' occasionally expand, or

"spike." Evidently, the wrong choice of "best" residual was made at those times when the

magnitude of the measurement noises caused the less precise hypothesis to be favored. However,

it is significant to note the filter's immediate recovery once subsequent measurements are received.

Referring to Figure E.1.2, the la values at t, (which indicate the quality of the control signals

for the FUR sensor controller) appear stable and well-behaved. Figures E.1.7 through E.1.12

illustrate the impact of invoking the probability-of-miss. Although the la values at t" remain

relatively unchanged, the 1a values at t," are more erratic, a behavior attributed to the combination

of incorrect state estimates and the propagation of state estimates when measurements are not

available. With Pm equal to 0.30, the filter's performance degrades notably, as seen in Figures
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E.1.13 through E.1.18. The same pattern is noticeable for X equal to 2.01 jim, as seen in Figures

E.3.1 through E.3.18.

For the longer wavelengths, the filter's performiance becomes sensitive to increases in P,,,

as illustrated in Figures E.5.1 through E.6.18 with , equal to 10.5 mim. To refer back to Table

6.3, the measurement noise variance of the 10.5 jim Doppler return is now two orders of

magnitude greater than the variance for X equal to 0.53 pim. In addition, the 10.5 pm Doppler

return measurement noise variance is also greater than the speckle return measurement variance.

In Figure E.5.3, note the different characteristics in the a values. The recovery from a wrong

estimate is no longer a "spike" with a quick return, but extended periods of expansion. As Figures

E.6.14 and E.6.15 show, the filter's performance further degrades with an increase in Pm to a point

where the filter successively generates incorrect state estimates. This behavior is brought about

by the increase in measurement noise and P, such that the correctness of the two hypothesis

become less discernible in the residual characteristics.

The extent of this deterioration can be seen in Table 6.6, which lists the true offset error

statistics for Case 1. Similar to the one-state Doppler filter, the true mean errors of Table 6.6 are

not systematic and offer little insight into the filter's performance; they are very small compared

to the standard deviation, as seen in the previous case. Nonetheless, trends can again be observed

in the la values at t, and t(. The pattern of these values confirm that the filter performs well

with the shorter wavelengths. Note that, while the values for l at t[ remain relativeiy stable, the

Icr values at tj÷ grow methodically with an increase in X and P,, along with a decrease in SNR.

At X equal to 10.5 pm, the filter's performance becomes unacceptable.
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Table 6.6 Two-State Modified MAP MMAE Offset Error Statistics for Case 1 (in Pixels)

X.,pni SNR _ Pm mca(t[-) mean(t[") la(t,-)1at)

.53 10 0.0 .33822E-4 .18678E-4 .14904E+0 .31945E-2

.01 -.39903E-3 .32547E-3 .14932E+4O .12852E-1

.02 -.89191E-3 .43935E-3 .14954E+0 .18845E-1

.03 -. 12107E-2 -.24677E-3 .14989E4.O .30205E-1

.04 -.69277E-3 -.97808E-3 .14988E+0 .37895E-1

.05 -.13571E-3 -.38331E-3 .15000E+-0 .44.448E-1

.10 .27966E-3 -.35659E-3 .15038E+0 .72172E-1

.20 .1 5996E-2 .20021E-2 .1 5063E+0 .1 1733E+O

.30 .1 3357E-2 .16175E-2 .15053E+0 .13116&,i-0

4 0.0 -. 13042E-5 -.52716E-4 .14895E-i- .41866E-2

.01 -.47029E-3 .25518E-3 .14927E+0 .13865E-1

.02 -.94834E-3 .37101E-3 .14949E+0 .19772E-1

.03 -.1I2849E-2 -.34905E-3 .14986E+O .31022E-1

.04 -.81988E-3 -.I11022E-2 .14972E-i. .38708E-1

.05 -.23537E-3 -.49898E-3 .14983E-,O .45154E-1

.10 .21631 E-3 -.43832E-3 .15030E+0 .72594E-1

.20 .15713E-2 .19594E-2 .15054E+0 .1 1738B+O

.30 .12517E-2 .15399E-2 .15044E+0 .13112E+O

2.01 10 0.0 -.45957E-3 -.49394E-3 .14870E+O .12443E-1

.01 -.12408E.2 -.23504E-2 .14747E+0 .20557E-1

.02 -.69788E-3 -.20630E-2 .14232E+O .26077E-1

.03 -. 10382E-2 -.89523E-3 .14823E+0 .37409E-1

.04 -.49185E-3 -.13671E-2 .1479'7E+O .45259E-1

.05 .19771E-3 .37456E-3 .14733E+0 .49297E-1

.10 -.17522E-2 -. I2557E-2 .15180E+O .76836E.-l

.20 .87361E-3 .87518E-3 .15014E+0 .10868E+O

.30 .18422E-1I .18320E-1 .15078E+O .1 3459E+O

6-15



,im ]SNR 1P. [ mean(11) mean(t;) la(t[) l gt1 +)

4 0.0 -.32932E-2 -.31397E-2 .14971E+0 .22819E-1

.01 -.33141E-2 -.32291E-2 .15189E+0 .32314E-1

.02 -.98558E-3 -. 13796E-2 .14561E+0 .31069E-1

.03 -.40762E-2 -.42124E-2 .15748E+0 .51092E-1

.04 -.32898E-3 .11863E-2 .13978E+0 .46989E-1

.05 .50116E-3 -. 10566E-2 .14657E+0 .53971E-1

.10 -.25768E-2 -.31636E-2 .14960E+-0 ,7933E-1

.20 -.15304E-2 -.22255E-2 .14749E+0 .10642E+0

.30 .19264E-2 .31013E-2 .14733E+0 .12655E+O

10.5 10 0.0 -.21071E-1 -.20738E-1 .18448E+0 .84377E-1

.01 -.16689E-1 -. 15960E- 1 .17880E+0 .84557E-1

.02 -.20723E-1 -.18649E-1 .18634E+0 .97423E-1

.03 -.17178E-1 -.16382E-1 .17808E+O .93890E-1

.04 -.29128E-1 -.29388E-1 .19848E+0 .13033E+0

.05 -.26703E-1 -.27624E-1 ,19660E+0 .13089E+O

.10 -.26909E-1 -.27012E-1 .19716E+0 .14193E+0

.20 -.26618E-1 -.26112E-1 .20074E+0 .17841E40

.30 -.35108E-1 -.34632E-1 .21324E+0 .20015F,+0

4 0.0 -.23786E-1 -.23439E- 1 .19198E+0 .99170E-1

.01 -.16894E-I -.16176E-1 .18136E+0 .92106E-1

.02 -.21026E-1 -.18947E-1 .18884E+0 .10353E40

.03 -. ,17262E-1 -.16431E-1 .18008E+0 .99596E-1

.04 -.32105E-1 -.32382E-1 .20460E+0 .14033E+0

.05 -.47341E-1 -.47771E-1 .23468E+0 .18452E+0

.10 -.28458E-1 -.28269E-1 .20094E+0 ,14764E+O

.20 -.30184E-1 -.29689E-1 .20984E+0 .18882E+0

.30 -.35536E-1 -.35092E-1 .21675E+0 .20395E+0
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6.4.2 Case 2: Continuously Available Speckle Returns. As mentioned earlier, the two-

state Modified MAP MMAF in this case functions with the Pm parameter exclusively affecting the

Doppler return (the hardbody-induced Doppler retui n becomes indistinguishable from that of the

plume). Under these circumstances, the filter operates under the assumption that the bias caused

by the plume's speckle reflectance is in the speckle return measurement (Section 5.3.2.2). Even

though this is true only 90% of the time, the bias cannot be actively estimated when the Doppler

measurement is unavailable (due to the inherent observability problem with only the speckle

measurement). Therefore, the most recent bias value is assumed to persist in all speckle

measurements until Doppler measurements return and active bias estimation can resume. As the

plots in Appendix F show, the filter's performance is almost similar to Case 1. Figures F.5.1

thlough F.6.10 show the same pattern of extended periods of incorrect estimates as compared to

Figures E.5.1 through E.5.10. However, the figures for Case 2 in Appendix FA4 begin to exhibit

longer transient timesbefore reaching a steady state. This initial behavior occurs in Case 2 since

the configuration of the measurement distribution matrix is forced to include the bias state

whenever the Doppler return is undetectable, thus providing more opportunities to select the wrong

hypothesis (Section 5.3.2.2). However, there is some improvement in the estimates, which can

be credited to the constant availability of the speckle return measurements. For instance,

comparing Figure E.6.9 with F.6.9 (the results of these plots are actually not acceptable, but they

clearly illustrate the improvement gained by having continuous specld•' return measurements)

shows that Case 2's performance does not deteriorate as much as Case 1 's. Although a longer

initial transient is seen for Case 2 (Figure F.6.9), one can note the smaller values of o and the

better recovery ability. This better performance is confirmed by comparing Table 6.7 to Table

6.6 and noting the improvement in the lo values.
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Table 6.7 Two-State Modified MAP MMAF Offset Error Statistics for Case 2 (in Pixels)

Xpm -[ ean[,-) mean(f, =o)

.53 10 0.0 0.33822E-4 -0.18678E-4 0.14904E+0 0,31945E-2

.01 -0.10650E-3 -0.25523E-3 0.14831E+0 0.53584E-2

.02 0.27202E-3 0.11516E-3 0.14269E+0 0.79514E-2

.03 -0.43156E-3 -0.16704E-3 0. 14806E+0 0.13082E- 1

.04 -0.37338E-3 -0. 14840E-3 0.14744E+0 0.15582E-1

.05 -0.1 1909E-3 0.20641 E-4 0. 14750E+0 0.19875E-1

.10 -0.1 1103E-2 -0.11407E-2 0.15249E+0 0.34393E-1

.20 0.56603E-4 0.27481E-3 0. 14906E+0 0.52569E-1

.30 -0.44194E-3 -0.32322E-3 0. 14890E+O 0.72982E-1

4 0.0 -0.42414E-3 -0.33754E-3 0.14842E+0 0.56773E-2

.01 -0.91824E-3 -0.57512E-3 0,14887E+0 0.82736E-2

.02 0.43942E-3 0.38938E-3 0.14511E+O 0.10417E-1

.03 -0.12666E-2 -0.12221 E-2 0.15557E+O 0. 17398E- 1

.04 0.41729E-3 0.92052E-3 0.13861E+0 0.1 6539E- 1

.05 0.58756E-4 0.18977E-3 0.14590E+O 0.21870E-1

.10 -0.21232E-2 -0.17971E-2 0.14866E+O 0.34161E-1

.20 -0.26346E-2 -0.26733E-2 0.14541 E+0 0.52123E-1

.30 -0.13965E-2 -0.12422E-2 0. 14380E+0 0.73377E- 1

2.01 10 0.0 -0.45957E-3 *-0.49394E-3 0.14870E+0 0.12443E-1

.01 -0.86927E-3 -0.101 56E-2 0.14819E+O 0.15144E- 1

.02 -0.10440E-2 -0.12024E-2 0.14232E+0 0.17888E-1

.03 -0.18569E-2 -0.16089E-2 0.14759E+O 0,22171E-1

.04 -0.12858E-2 -0.10667E-2 0.14644E+0 0.23761E-1

.05 -0.47967E-3 -0.34617E-3 0.14755E+O 0.26227E-1

.10 -0.30232E-2 -0.3041 1E-2 0. 1513 1+0 0.41426E- 1

20 -0.11 163E-2 -0.89814E-3 0. 14899E+0 0.57322E-1

.30 -0.21351E-2 -0.20301E-2 0.14803E+0 0.75903E-1
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Xim SNR P. F mean(t1) mean(t[") 1o(ti) 1 v(tj+)

4 0.0 -0.23257E-2 .,0.22422E-2 0.15023E+O 0.22428E-1

.01 -0.20302E-2 -0.16982E-2 0.15005E+O 0.21492E-1

.02 -0.10081E-2 -0.10582E-2 0.14491E+0 0.23964E-1

.03 -0.42251E-2 -0,41811E-2 0.15707E+0 0.33630E-1

.04 -0.61153E-3 -0.11602E-3 0.13876E+O 0.27786E-1

.05 -0.40743E-3 -0.28042E-3 0.14638E+0 0.31682E-1

.10 -0.33908E-2 -0.31044E-2 0.14984E+0 0.43704E-1

.20 -0.56010E-2 .0.58369E-2 0. 14825E+O 0.62616E-1

.30 -0.43593E-2 -0.41875E-2 0. 14626E+0 0.79954E-1

10.5 10 0.0 -0.21071E-1 -0.20738E- 1 0.18448E+0 0.84377E-1

.01 -0. 13267E- 1 -0.13409E-1 0. 17218E+0 0.70387E-1

.02 -0. 19407E- 1 -0. 19548E- 1 0.17415E+0 0.83323E-1

.03 -0.18826E- 1 -0.18930E- 1 0.17470E+0 0.79366E- 1

.04 -0.63974E-2 -0.62002E-2 0.15939E+0 0.57878E-1

.05 -0.74758E-2 -0.73681E-2 0.16349E+0 0.62397E-1

.10 -0.12305E- 1 -0.12303E-1 0.16461 E+0 0.76550E- 1

.20 -0.20081 E- 1 -0.20217E- 1 0.17927E+O 0.10990E+O

.30 -0.40824E- 1 -0.40763E- 1 0.21284EM0 0.16459E+-

4 0.0 -0.23344E- 1 -0.23223E- 1 0.19079E+0 0.10238E+0

.01 -0.18769E-1 -0.18477E-1 0.18358E+0 0.90538E-1

.02 -0.16465E- 1 -0.16187E-1 0.17719E+O 0.87058E-1

.03 -0.27113E-1 -0.27153E-1 0, 19645E+O 0,10856E+0

.04 -0.28952E-1 -0.28138E-1 0.19392E+0 0.12448E+0

.05 -0.67151E-4 0.35709E-5 0.15185E+0 0.54615E-1

.10 -0.33658E-1 -0.33433E-1 0,20460E+0 0.13460E+0

.20 -0.32079E-1 -0.32443E-1 0. 19449E+0 0.13 145E+0

.30 -0.28231E-1 -0.27757E-1 0.18730E+0 0.13638E+0
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6.5 Comparison of the One-state Filter and the Two-State Modified MAP MMAF

This section compiles and compares the performance results of the one-state Doppler filter,

and Cases I and 2 of the two-state Modified MAP MMAF. The compiled results, contained in

Appendix G. are plotted to show the sensitivity of the filters to variations in the parameters of

wavelength, signal-to-noise ratio, and probability-of-miss at tI" and t,". Appendix G is divided into

two subappendices: Appendix G. 1 contains graphs that present a set of parametric curves that give

RMS errors (in units of pixels) as functions of wavelength for various SNR's and for a given

value of Pmo, and Appendix G.2 contains graphs that show a set of parametric curves that give

RMS errors as functions of wavelength, for various values of P, and for a given value of SNR.

Each figure has three graphs, arranged to present the performances of the one-state Doppler filter,

and the two cases of the two-state Modified MAP MMAF, concurrently. Additionally, for each

subappendix, the results at t,÷ are presented first, followed by the results at t,', to illustrate the

pattern of errors that result from state estimate propagation. One should be aware of the change

of scale of the RMS errors axis when transitioning from t1+ to t-.

In Appendix G.1, one notes the general increase in RMS errors as Pm increases and/or

SNR decreases at both t,+ and tI. At t,+, the parametric curves of the one-state Doppler filter

appear constant, and as Figures 0. 1.1 through G. 1.6 show, the slope of the curves decreases as

P, increases. The parametric curves for Case 1 and 2 of the two-state Modified MAP MMAF are

not as structured and stray at the longer wavelengths. This irregular behavior suggests that more

than ten Monte Carlo runs should be performed to smooth the data in order to reveal the patterns

more adequately. In Case I, the curves at shorter wavelengths (less than 2.01 prm) do possess

some readable patterns. As P, increases, the slope of the curves begin to decrease, and as Figures
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G.1.4(b) through G.1.6(b) illustrate, the curves reacquire an increase in slope, causing i "basin"

phenomenon to develop for a range of wavelengths less than 2.01 pm, at P, greater than or equal

to 0.10. The occurrence of the "basin" within a region of wavelengths implies a balance between

the propagation of the state estimates and the contribution of noise-corrupted speckle return

measurements. With lesser values of P,, the filter receives both Doppler and speckle return

measurements more frequently. As P, increases, an equilibrium point, within a range of

wavelengths, is reached where merely propagating the state estimates is more advantageous to the

filter, instead of receiving a measurement. This rational is supported by recalling the small values

of dynamics noise variance that resulted from tuning the two-state Modified MAP MMAF

(Section 5.3.3.6) is now the dominant driver of the propagation errors. Also, an examination of

Tables 6.4 and 6.6 shows that the inclusion of the speckle return in the measurements, along with

the concurrent absence of both returns, increases the error standard deviations as compared to

using Doppler measurements alone. Thus, in a region of wavelengths less than 2.01 Pim, the

absence of measurements (corresponding to an increase in Pj) is an advantage, where it is more

beneficial for the filter to rely instead on using its dynamics model to propagate the most recent

state estimates. However, note that even though the "basin" occurs, the RMS errors remain larger

than Case 2's.

In Figures G. 1.1 through G. 1.6, a comparison at the shorter wavelength regior' of Case

2 with Case I reveals a slower growth rate of RMS errors. Although the curves do not exhibit

the decreasing slope or "basin" phenomenon, the RMS errors remain less than those of both Case

I and the one-state Doppler filter. This exceptional performance can be substantiated by realizing

that, unlike Case 1, the offset state estimates are continually updated by virtue of the unhindered

speckle return measurements. Thus, the propagation errors do not grow as large as in Case 1, and
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the improved performance of Case 2 over Case 1 shows that the filter obviously functions better

with one measurement, corrupted as it may be, rather than no measurement. Based on these

results, using continuous speckle return measurements can indeed compensate for the loss of the

hardbody-induced Doppler return.

At t[ (note the change in scale compared to the case of t,+), the one-state Doppler filter's

errors are relatively constant at the shorter wavelengths. Curves at the longer wavelengths display

a tendency to spread, although the differences in errors are minuscule. In contrast, the curves of

Case 1 and 2 begin to spread at wavelengths beyond 2.01 jim. Furthermore, the same "basin"

pattern of Case 1 is seen in Figures G. 1.8(b) through G. 1.12(b). Generally, the one-measurement

filter achieves the best results at t,", with Case 2 of the two-measurement filter configuration

slightly outperforming Case 1.

The graphs of Appendix G.2 show parametric curves that give RMS errors as functions

of wavelength, for a number of values of Pm and for a given value of SNR. For the one-state

Doppler filter at t,+, it is evident that decreasing SNR has little effect, as compared to increasing

Pr,. Although the plots for Cases 1 and 2 also suggest a need for more Monte Carlo runs (as seen

previously), one can also observe an insensitivity to SNR. Figures G.2.1(b) and (c) through

G.2.4(b) and (c), illustrate that, at the shorter wavelengths, for SNR equal to 10, 8, 6, and 4, the

RMS errors are relatively unchanged.

At t[, similar insensitivity to decreases in SNR is apparent in the one-state Doppler filter,

and for the shorter wavelengths of Cases I and 2. For a given SNR, the parametric curves of the

one-state Doppler filter are nearly horizontal and concentrated at the shorter wavelengths. As the

SNR decreases, the curves become slightly less dense as the wavelengths increase, which signifies
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less precise measurements due to the increase in measurement noise variance. However, the

relative flatness of the curves is attributed to two factors, First, as seen in Equation (4-61), the

measurement noise variance is inversely proportional to the square root of the SNR value. Hence,

a decrease in SNR within the given range of values invokes small increases in measurement noise

variance. Second, the propagated state estimates remain accurate whenever a measurement is

missing due to the elementary form and adequacy of the one-measurement filter's dynamics

model. This type of insight is not as obvious in Case I or 2, although the divergence of the

curves does imply less precise measurements, particularly when the Doppler return measurement

noise variance approaches and exceeds that of the speckle return. The divergence is further

compounded by the occasional wrong estimates of the two-state Modified MAP MMAF due to

choice of the wrong hypothesis in the adaptive decision process. However, in the region of

shorter wavelengths, Case 2 consistently displays better performance than Case 1, proving the

benefit of continuously available speckle returns.

6.6 Summary

This chapter presented the results and findings of this thesis. The performance of the one-

state speckle return filter was shown to exhibit the effects of the plume's speckle reflectance. As

anticipated, the offset estimates were biased by a corresponding amount of plume speckle return.

Graphical and tabular results of a sensitivity analysis conducted on the one-state Doppler filter and

two-state Modified MAP MMAF were presented and discussed. The results were compiled and

incorporated into two graphical sets of parametric curves which were utilized to compare the

performances of the Doppler filters. In general, each filter's performance at ts÷ showed a

sensitivity to changes in Pm and SNR, whereas the performance at t, was consistent, revealing
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a degree of tolerance to the parameter variations at ti. Although this tolerance is largely due to

the propagation errors that dominate the performance characteristics, the consistent behavior at t"

signifies that the propagated control signals to the FLIR sensor controller will also be dependable.

Overall, the center-of-mass filters all exhibited less sensitivity to vaniations in SNR values than

in P, values. In the shorter wavelengths, the two-state Modified MAP MMAF, Case 2,

outperformed both Case 1 and the one-state Doppler filter. Its superior performance results from

the constant update of the offset state, thus decreasing the propagation errors. The performance

not only attests to the advantage of using all available measurement sources, but also confirms that

the continuous speckle return is a viable backup during the loss of Doppler returns.
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter presents the conclusions based upon the results in Chapter 6 and suggests

topics for further research. This thesis has been a feasibility study of employing Doppler for a

finer discernment of a target missile plume/hardbody interface than is possible from the speckle

i-eturn from a low-power laser. Presented in Section 7.2 are the conclusions derived from the

sensitivity analysis conducted on the one-state Doppler filter and the two-state modified MAP

MMAF. Section 7.3 covers the recommendations that arise from this study.

7.2 Conclusions

The results show the viability of utilizing Doppler return measurements with a linear

Kalman filter in the estimation of the location of the missile hardbody center-of-mass. A key

consideration in making the Doppler phenomenon workable in the tracking scenario is the distinct

contrast between the plume and hardbody-induced Doppler spectra. Based on these differences,

a model which represents offset measurements derived from the hardbody-induced Doppler return

was developed. For the model, no attempt was made to simulate the actual Doppler phenomenon.

Rather, the approach was based upon simulating the quality of the low-energy laser return as a

functic'i of wavelength and signal-to-noise ratio, and simulating a specified probability of no

Doppler information at a given sample time due to either the plume and hardbody spectra being

nondistinguishable or the low-power laser beam being distorted as to miss the intended aimpoint

on the target body.
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This study, in conjunction with the two previous theses [5,6], regards the location of the

hardbody center-of-mass as an offset distance relative to the target plume intensity centroid on the

FUR image plane. A low-energy laser is aimed at the FLIR filter's positional estimates of the

intensity centroid, and then scanned along the target's estimated velocity vector. The success of

locating the hardbody is therefore dependent upon the accuracy of the FLIR filter's estimates.

However, an "apparent" jitter of the intensity centroid on the FLIR image plane due to

atmospheric distortions presents a major obstacle for the laser scan to intercept the hardbody and,

as a result, motivated the development of a laser sweep routine [61.

The performances of the one-state Doppler filter and the two-state Modified MAP MMAF

are judged on the basis of the respective mean * Ia error plots at tI and at t,' (just before and just

after update, respectively) shown in Appendices C (one-state Doppler filter), E (two-state: Case

1) and F (two-state: Case 2). In addition to the error plots, the actual RMS errors at t- and t,', in

units of pixels, are also calculated and are utilized to compare the respective performances

(Appendix 0). The error analysis of Chapter VI noted from tabular data that the magnitude of

the true mean errors are substantially smaller than the la values and are thus insignificant in the

calculation of the actual RMS errors. The analysis, therefore, focused upon the quality of the

standard deviations (1 a) at t, as a measure of the stability and performance of the center-of-mass

filters. The usefulness of this criterion is strengthened by recognizing that the estimates

propagated over a sample period are used to drive the FLIR sensor pointing controller, and

therefore the propagated values of standard deviations are crucial for maintaining track on the

center-of-mass in order to ensure that. a high-energy laser is continuously directed at the hardbody

for a finite length of time. Presented below are the conclusions regarding the individual
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performances of the one-state Doppler filter and the two-state Modified MAP MMAF, and the

comparison of their effectiveness during the sensitivity analysis.

7.2.1 One-State Filter with Doppler Return Measurements. The one-state Doppler filter's

performance was stable throughout the sensitivity analysis. The filter was tolerant to changes in

wavelength of the low-power laser and SNR of the return signal, and it demonstrated an

insensitivity to the intermittent absences of measurements. Under the worst conditions (4 =

10.5pm, SNR = 4, P, = 0.30), the one-state filter obtained a 1 a value at t[- of 0.154 pixel (from

Table 6.4), or a 6.8% increase of the lcr value under the best conditions. This increase

corresponds to a 0.291 meter difference between the two 1 Y values. The insensitivity of the t(ti)

values is due to dominant effects of atmospheric jitter upon the propagation errors- much higher

sensitivity is seen in the I(t,÷) values.

The parametric curves of the one-state Doppler filter in Appendix G achieved nearly

constant RMS errors throughout the sensitivity analysis. The best performance is observed at the

shorter wavelengths, attributable to the smaller measurement noise variances associated with this

range. The curves indicate that the one-state filter is more sensitive to changes in P, than in

SNR. This observation can be substantiated by noting in Equations (4-53) through (4-55) that the

measurement noise variance associated with the Doppler measurement is inversely proportional

to the square root of the SNR. Thus, changes in SNR within the given range of values invoke

small changes in measurement quality, whereas the absence of measurements forces the filter to

propagate the most recent estimates without the benefit of a current update. Moreover, the

measurements may be absent over sequential sample times, and the quality of the propagated

estimates is then reliant upon the adequacy of the propagation model.
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7.2.2 Two-State Modified MAP MMAF. The two-state Modified MAP MMAF was

proposed so as to take advantage of both speckle return and Doppler return measurements. The

sensitivity analysis was performed on two case conditions that respectively take into account the

absence of both returns or the exclusive absence of the Doppler return. In Case 1, both speckle

and Doppler return measurements are missing due to events that include attenuation of the return

signal as it propagates the 2000 km range, bending of the low-power laser beam such that no

intercept with the hardbody is accomplished, and signal losses within the receiving equipment.

Under these circumstances, the two-measurement filter merely propagates its most recent

estimates. Case 2 encompasses those instances where the target's aspect angle approaches an

orientation orthogonal to the LOS vector. When this occurs, the radial velocity of the plume and

hardbody become nil, resulting in no Doppler shift. Consequently, the return spectra of the plume

and hardbody converge and overlap each other, which makes the hardbody-induced Doppler return

difficult, if not impossible, to detect. However, the availability of the speckle return measurement

is not affected by the target aspect angle and, under in this situation, continues to be provided to

the two-measurement filter.

It should be mentioned that the irregular nature of the RMS errors for the longer

wavelengths (as seen in Appendix G) suggest the need for more Monte Carlo runs in order to

pinpoint the statistics adequately in that region. Thus, conclusions about the two-state Modified

MAP MMAF's performance are confined and limited to the shorter wavelengths.

7.2.2.1 Case 1: The Loss of Both Returns. In Appendix E, the plots corresponding to

probability-of-miss Pm equal to 0.0 show that the algorithm performs well in capturing the random

nature of the plume's speckle reflectance by choosing between the two hypotheses about speckle
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return: plume speckle bias present or absent in the measurements. There were instances, however,

where the algorithm provided the wrong estimates, generated by the filter based on the wrong

hypothesis, due to the nature of individual samples of the measurement noises. Nevertheless, the

filter recovered quickly and the effect of the erroneous estimates was negligible. The parametric

curves were observed to develop a "basin" phenomenon at P, greater than or equal to 0.10. The

occurrence of the "basin" within a region of wavelengths implies a balance between the absence

of measurements and the contribution of noise-corrupted speckle return measurements. Otherwise

stated, with lesser values of P,, the filter received both speckle and Doppler measurements at a

higher rate. Tables 6.4 and 6.6 evince that including the speckle return increased the la values

over the results of using only Doppler return measurements. With higher values of P, the filter

benefits from the absence of corrupted measurements, relying instead on its internal dynamics

model to propagate the most recent estimates. The tabular data of Table 6.6 show that acceptable

values of I c at tr" are acbieved at the shorter wavelengths. As with the one-state filter, the graphs

in Appendix G indicate the filter is wore sensitive to changes in P, than to changes in SNR.

7.2.2.2 Case 2: Continuous Speckle Returns. As discussed in Section 5.3.2, during the

temporary loss of Doppler return measurements, the measurement matrix is configured to accept

speckle return under the assumption the plume speckle bias is present in the measurement. This

assumption is necessary since, without the Doppler return, the bias state is unobservable.

Furthermore, this assumption is supported by recalling that the bias appears 900,,o of the time. As

a result, until Doppler return measurements resume, the most recent bias state estimate is retained.

The two-state Modified MAP MMAF disclosed a better performance under Case 2

conditions. The effect of utilizing the speckle return measuremenm to compensate for undetectable
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hardbody-induced Doppler returns is clearly beneficial, as evidenced by the data in Table 6.7 and

the parametric curves of Appendix G displaying lesser RMS errors than Case 1. The parametric

curves also show that the filter is tolerant of changes in SNR and, compared to the one-state

Doppler filter and Case 1, is the least sensitive to fluctuations in P, at it.

7.2.3 Filter Comparison. In the region of the shorter wavelengths, each filter

performed well, due to the con'esponding small measurement noise variance. In general, the filters

exhibited more sensitivity to fluctuations in P, than in SNR. The one-state Doppler filter has the

advantage of receiving more precise measurements of only the offset distance (versus speckle

measurements that are less precise and are biased 90% of the time) and, as evidenced by the

nearly constant RMS errors, displayed a favorable degree of tolerance throughout the sensitivity

analysis. The one disadvantage of the one-state Doppler filter is the total dependence on the

Doppler return, which raises reliability concerns.

Although the specific analysis is lacking for the larger wavelengths, Case 2 of the two-

state Modified MAP MMAF identified a region of wavelengths where its performance ik superior

to that of the one-state Doppler filter. Additionally, Case 2 has the advantage of being a dual-

return measurement system, which increases its level of reliability. Furthermore, the provision

of both speckle and Doppler return would enhance the filter's performance if the target missile

utilizes a liquid propellant rather than a solid propellant and thus displays no significant plume

reflectance. This study, in spite of its limitations, advocates the tNo-state Modified MAP MMAF

and use of shorter wavelength low-power laser to generate the measurements, as well as further

exploration on the operability of such a filter with the larger wavelengths.
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7.3 Recommendations

The following are suggested topics for further study in using a linear Kalman filter to

track a missile hardbody using FLIR data and Doppler and/or speckle return measurements. Some

of the recommendations correspond to secondary objectives of this research which were not

pursued due to time constraints. Other recommendations are made to enhance the modeling of

the Doppler return and strengthen the analysis at the longer wavelengths.

7.3.1 Increased Number of Mcnte Carlo Runs. With the two-state Modified MAP

MMAF, the irregularity of the RMS errors at the longer wavelengths suggests a need for an

increased number of Monte Carlo runs. The two-state Modified MAP MMAF displayed the

potential to provide equal, if not better, performance compared to that of the one-state Doppler

filter in a limited range o; wavelengths. Future if search into tie operability of the two-state

Modified MAP MMAF over longer wavelengths necessitates this recommendation,

7.3.2 PlumelHardbody Interface Doppler Return. The issue of whether the Doppler

phenomenon is feasible for tracking the missile hardbody was addressed on the basis of the

measurement quality for a low-energy laser reflection. Specifically, a relationship that gives RMS

angle tracking errors as a function of wavelength and signal-to-noise ratio [161 was invoked to

model noise-corrupted Doppler return measurements. Although documentation regarding the

Doppler return characteristics of the plume is available, experimental data on the Doppler return

of the plume/hardbody interface would be more valuable for modeling purposes. The data should

reflect the effect upon the Doppler return as the laser beam traverses from the plume to the

hardbody. This would furnish a measure of how well the interface can be discerned cnd this

information can be coupled with the RMS angle tracking errors to develop a more realistic
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measurement model. Note that the "probability-of-miss" simulated here addresses the inability

to discern the difference between hardbody and plume returns under certain circumstances, but

only doing so probabilistically.

7.3.3 Consolidation of Cases I and 2 of the Two-State Modified MAP MMAF. Since the

sensitivity analyses for Cases 1 and 2 were conducted separately, the data generated can be used

in a conservative sense. Should there be a need to note the performance of the two-state Modified

MAP MMAF under Case I conditions for a P, of 0.10 and simultaneously under Case 2

conditions for a Pm of 0.03, the reasonable approach would be to consider the performance as

ranging between the results for the two cases. However, the tracking scenario may not afford the

luxury of such conservativeness and may require more definite results. If so, then further research

in this area should develop a model that consolidates both cases.

7.3.4 Alternative Low-Energy Scan Techniques. As with the previous thesis [6], this topic

remains to be investigated. The low-energy laser sweep is one possible method to ensure that a

measurement is available to the filter at each update. Although the sweep is not preferred, it does

compensate for the "apparent" jitter of the intensity centroid on the FLIR image plane. Unless

the FLIR filter positional estimates improve, alternate means of propagating the laser scan which

are computationally more efficient than the sweep are required. Several techniques that may be

explored include sinusoidal scans and circular scans along the FLIR filter estimated velocity

vector.

7.3.5 Oscillation of the Plume's Speckle Reflectance. As mentioned in Section 4.3.2.2.

the plume's speckle reflectance was observed to exhibit low-frequency oscillations about its

longitudinal axis. This observed oscillation will have an impact on the offset distance estimates
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that are realizable from the speckle return measurements. The wavering action may be simulated

by a model similar to the pogo phenomenon model [35], with its own nominal amplitude and

frequency values. Since the observation is germane to the two-state Modified MAP IMMAF, it

should be included in future studies,

7.3.6 Plume/Hardbody Interface Speckle Return. From the previous thesis [6], the

measurement noise variance associated with the speckle return was determined by setting the

standard deviation to 1.0% of the length of the hardbody and converting to variance in pixels2 by

squaring. Based upon the uncertainties of the plume's speckle reflectance, a decision was made

to retain that particular value of variance for this thesis. However, future studies should

incorporate relationships that give measurement noise variance as a function of wavelength and

SNR similar to the Doppler return measurement noise variance. Additionally, in a manner parallel

to Section 7.3.2, knowledge of the effect of the speckle return as the low-energy laser migrates

over the plunie/hardbody interface would enhance the speckle measurement model. Moreover,

with the presence of the plume's speckle reflectance, data regarding the speckle return as it

traverses from the plume to the hardbody may provide more modeling insight.

7.3.7 Bayesian Approach to the Phwne Speckle Reflectance and MMAF. In this study,

the speckle reflectance emanating from the plume of a solid-propellant rocket moter is set to a

nominal value of 25 meters. Although sufficient for a first-cut model, the plume speckle

reflectance model can be enhanced further by modeling the length of the bias as Gaussian

distributed values that range from 0 to 30 meters. Moreover, a bias equal to 0 meters would

represent instances of no plume speckle reflectance and would therefore reflect the bias's non-

appearence percentage during boost time.
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Similarly, the estimation process of the two-state MMAF may be performed in a Bayesian,

rather than MAP, manner. As noted in the analysis of Chap VI and the performance plots in

Appendices E and F, the two-state Modified MAP MMAF occasionally produced the wrong state

estimate. When the parameters of wavelength, SNR, and P, were varied, the instances of

incorrect estimates became more frequent and sucessive. This is a dominant factor in the increase

of the time-averaged error standard deviations. With a Bayemian MMAF, the state estimate would

be a "blended", probabilistically weighed summed estimate. The instances of incorrect estimates

may diminish and thus reduce the error standard deviations.
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The performance of the Kalman filters used in this thesis is evaluated using ten Monte

Carlo runs. A Monte Carlo analysis involves collecting statistical information generated from

simulating samples of stochastic processes [171. Although ten Monte Carlo runs -are generally

sufficient to converge to the actual statistics that would result from an infinite number of runs

[6,20], the analysis of the two-state Modified MAP MMAF's performance showed a need for

more than ten runs.

For the simulation, the truth model creates an environment to provide a realistic target

plume representation as it propagates through inertial space. The FLIR filter attempts to track the

target plume using its internal dynamics model and periodic measurements from the enhanced

corre.ator algorithm. The truth model also simulates the location of the hardbody center-of-mass

as an a priori offset distance from the plume's intensity centroid on the FLIP, image plane. The

center-of-mass filters estimate the offset distance upon acquiring low-energy laser return

measurements.

After collecting N samples of truth model and filter model data for ten separate Monte

Carlo runs, the true error statistics can be approximated by computing the sample mean error and

error variance for the ten runs. The sample mean error and error variance are computed by:

1 N
E(tO I: - tflUer.(t) Al

2N11) 1 ? 2(t,) (A.2)0 [ .(t) 1 l)e

N--I M- f'1-., N- I

where

E(It) sample mean of the error of interest at time t,

oa(t,) sample error variance at time t4

x,,, .(t,) =ftruth model value of the variable of interest at time t, during
simulation n
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x,,, ,.(t ) = filter estimate of the variable of interest at time t, during
simulation n

N - number of Monte Carlo runs

The variable of interest for this study is the offset distance along the estimated velocity

of the intensity centroid on the FLIR image plane. The performance evaluation of the center-of-

mass filters and the conclusions drawn from the sensitivity analysis are based upon the error

statistics of the offset distance estimates. The statistics are calculated before the measurement

update at (t[) and after the update at (Q,). They are reduced further to obtain average scalar values

over the time of the run, by temporally averaging the mean error and standard deviation (o) time

histories over the last eight seconds of the ten second simulation. The first two seconds are not

used to ensure that the data reflects only steady state performance [6]. The errors are measured

in units of pixels, where a pixel is 15 pirad on a side (approximately 30 meters at a distance of

2,000 kin).
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Two different types of data plots are presented in Appendices C through F to assess the

performance of the center-of-mass filters employed in this thesis. The first type of plot, shown

in Figure B.1, provides filter tuning information by illustrating the relationship between the actual

RMS errors in the estimates of the variables of interest, committed by the filter, with the filter-

computed RMS errors, i.e., the filter's own representation of its errors. The second type of plot,

shown in Figure B.2, provides a measure of the tracking peformance. The plot shows the sample

mean filter error, averaged over the ten Monte Carlo runs, for a state or variable of interest. In

addition, this type of plot displays the Ia (standard deviation) through the mean : I curves that

surround the mean curves, either just before a measurement is generated at t,-, or after a

measurement is generated at t,". The offset values at t[" are used as control signals for the FUR

sensor controller in between measurements and are crucial for tracking the hardbody effectively.

Futhermore, the quality of the Ia values at t, provides the basis for the analysis and performance

evaluation of the center-of-mass filters.
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FILTER VS ACTUAL ERROR (CM OFFSET)
FON Q.3oO,'FMN4 o.oooi",a/TMN 0.000178./'OFF U7/PC 15/,Run 1074

~-Actual RMS Error
R

R Filter Computed RMS Error.-

L

S4

rime IN SECONDS

Figure B. I Example of Time History Plot of Filter vs. Actual errors

ESTIMATED OFFSET-MINUS POSITION (~-/-) SIGMA
FDN 0.300/'FMN 0.000178/T414 0,000178/OFF 87/'PC 15,'Run 90`4

Mean Error + Ia -Mean Error

01

L 0 2j

Time 124 SECONDS

Figure B.2 Example Time History Plot of Filter Error Statistics (Mean ±la)
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This appendix contains the true offset error plots for the one-state center-of-mass filter that

receives measurements derived from low-energy laser Doppler measurements. The plots show the

errors, in units of pixels, between the filter's estimated and true offset distance in the FLIR image

plane. The plots represent a sample of the sensitivity analysis that was conducted with

wavelength, signal-to-noise ratio, and probability-of-miss parameters. This appendix is divided

into the following sub-appendices:

Sub-Avpendix Category

C.1 0.53 mim Wavelength, SNR = 10

C.2 0.53 pm Wavelength, SNR = 4

C.3 2.01 pm Wavelength, SNR = 10

C.4 2.01 pim Wavelength, SNR = 4

C.5 10.5 pm Wavelength, SNR = 10

C.6 10.5 pm Wavelength, SNR = 4

Each sub-appendix contains three sets of three plots, for a total of nine plots. Each set

corresponds to a particular value of P, equal to 0.0, 0.05, and 0.30, respectively. The three types

of plots for each value of P,. show: 1) the filter-computed versus true RMS errors, 2) true mean

error :l sigma at ti, and 3) true mean error ±1 sigma at t,". An explanation of the plot symbology

can be found in Appendix B.
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FILTER VS ACTUAJ. ERROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1038
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Figure C. 1.1 0.53 pm Doppler Return One-State Filter Offset Error, SNR - 10, P, - 0.0

ESTIMATED OFFSET-MINi- POSITION (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 0038
0.4
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- 0.4

0 2 4 6 6 10

TIME IN SECONDS

Figure C.1.2 0.53 pm Doppler Return One-State Filter Offset Error at t,', SNR-10, P, - 0.0
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ESTIMATED OFFSET-PLuj POSITION (+/-) SIGMA
X1 DN 0.300/FMN 0.000178/TMN 0.000178/OFP 87/PC 15/Run 8039
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Figure C. 1.3 0.53 pmn Doppler Return One-State Fil-tev Offset Error at t,*, SNR- 10, P, - 0.0
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FILTER VS ACTUAL ERROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1034
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Figure C.l.4 0.53 pm Doppler Return One-State Filter Offset RMS Error, SNR-1O, P,, -0.05

ESTIMATED OFFSET-MINUS POSITION (+/-) SIGMA
FDN 0.300/FMN 0,000178/TMN 0.000178/0,' 87/PC 15/Run #034
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Figure C.1.5 0.53 tun Doppler Return One-State Filter Offset Error, SNR-10, P ,-0.05, at ti
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ESTIMATED OFF'SET-PLUS POSITION (1)SIGMA
iFDN 0.300/FMN 0.000178/TNN 0.000178/OFV 87/PC 15/Run 0034
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Figure C.l1.6 0.53 pm Doppler Return One-State Filter Offset Error, SNR.. 10, P., -0.05, at t,+
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FILTER VS ACTUAL ERROR (CM OFFSET)
PON 0.302/FMN 0,000179/TMN 0.000178/OFF 07/PC IS/Run 1364
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Figure C.1.7 0.53 pun Doppler Return One-State Filter Offset Error, SNR- 10, P1, -0.30

ESTIMATED OFFSET-MIN%. POSITION (+/-) SIGMA
FDN 0.302/I't.N 0.00017B/TMN 0.000176/OF'F 87/PC 15/Run 0364
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Figure C.l1.8 0.53 Wn Doppler Return One-State Filter Offset Error, SNR- 10, P. 0.30, at 17-
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ESTIMATED OFFSET-PLUoj POSITION (-)SIGMA
FDN O.302/FMN O.000178/TI4N O.00017e/oFF 87/PC 15/Run *364
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Figure C. 1.9 0.53 pin Doppler Return One-State Filter Offset Error, SNR- 10, P,1 -0.30, at t,*
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FILTER VS ACTUAL. ER~ROR (CM OFFSET)
FON 0.300/FMN 0.0OO17S/TNN 0.000176/OFF 67/PC 15/Run 0064
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Figure C.2. 1 0.53 pim Doppler Return One-State Filter Offset Error, with SNR - 4, P.,, 0.0

ESTIMATE~D OFFSET-MINuý POSITION (+/-) SIGMA
1'DN 0,300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1064
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Figure C.2.2 0.53 tunl Doppler Return One-State Filter Offset Error, SNR - 4, P',, 0.0 at t;



"1- ESTIMATED OFFSET-PLy. POSITION (+/-) SIGMA
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Figure C.2.3 0.53 gm Doppler Return One-State Filter Offset Error, SNR - 4, P, - 0.0 at r1
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FILTER VS ACTUA- ERROR (CM OFFSET)
FDN O.300/FMN O.000178/TMN O.0OO17B./OFF 87/PC 15/Run 6066
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Figure C.2.4 0.53 p~m Doppler Return One-State Filter Offset Error, SNR - 4, P. - 0.05
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Figure C.2.5 0.53 pm Doppler Return One-State Filter Oftset Error, SNR.-4, P,- 0.05, at t1
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ESTIMATED OFFSET-PL.j POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1066
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Figure C.2.6 0.53 pim Doppler Return One-State Filter Offset Error, SNR-4, P. - 0.05, at tj+
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FILTER VS ACTU&AL. ZRROR (CM OFFSET)
FDN O.302/FMN 0.000170/714W 0.000176/OrF 87/PC 15/Run 1373
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Figure C.2.7 0,53 pin Doppler Return One-State Filter Offset Error, SNR 4, P., 0.30

ESTJIMATED OFFSET-MINU- POSITION (+/-) SIGMA
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0

I

P

L

S

-2510I
0 2 4 6 810
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Figure C.2.8 0.53 pmn Doppler Return One-It Filter Offset Error, SNR-4, P,, 0.30, at t,'
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ESTIMATED OFFSET-PLL-. POSITION 1- SIGMA

FDN O.302/PMN O.000176/TMN O.000178/OF'F e7/PC 15/Run *373
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Figure C.2.9 0.53 pn Dopplcr Return One-State Filter Offset Error, SNR-4, P. 0.30, at ti"
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FILTER VS ACTUAL ERROR (CM OFFSET)

FDN O.302/rNN 0.000179,/TIN 0.000176/OFF 07/PC 15/Run *215
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Figure C.3. 1 2.01 imi Doppler Return One-State Filter Offset Error with SNR -10, P., 0.0
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Figure C.3.2 2.01 pm Doppler Return One-State Filter Offset Error, SNR - 10, P,- 0.0 at t;
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ESTIMATED OFFSET-PLUS POSITION +/)SIGMA

0 3FDN O.3O2/FMN Oý000178/TMN 0.000178/OFF 87/PC 15/Run #215
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Figure C.3.3 2.01 jum Doppler Return Onc-Statc Offset Filter, with SNR - 10, P.- 0.0 at t,+



FILTER VS ACTUAL ERROR (CM OFFSET)
0FDN 0.302/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run o220
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Figure C.3.4 2.01 pin Doppler Return One.-Sta'te Filter Offset Errhor, SNR - 10, F,, - 0.05

ESTIMATED OFFSET-MINUS POSITION (+1-) SIGMA
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Figure C.3.5 2.01 pm Doppler Return One-Statc Filter Off.i.t Error, SNR-10, P, - 0.05, at ti

~ ~~~~~~S I A E O F F S E T -M I N US... . .. . .. ... . . . . . .. .. . . .... P O S T I O (.. ... ..... ..... . .. . .. .. .. .. . . . . . . . . . ... ..



ESTIMATED OFFSET-PLUS POSITION (-)SIGMA
FVW 0.302/rNN 0.000178/TMN O.000I7B/OFF 67/PC 15/Run 0220
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Figure C.3.6 2.01 pam Doppler Return One-State Filter Offset Error, SNR- 10, P, -0.05, at ti+
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FILTER VS ACTUAL eRROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1225
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Figue C.3.7 2.01 ý.m Doppler Return One-State Filter Offset Error, SNR - 10, P, - 0.30
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Figure C.3.8 2.01 un Doppler Return One-State Filter Offset Error, SNR-10, P. - 0.30, at t[
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ESTIMATED OFFSET-PLb, POSITION (/)SIGMA
PDN 0.300/FMN O000078/TMN 0.000178/OFF 87/PC 15/Run #225
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Figure C.3.9 2.01 pmn Doppler Return One-State Filter Offset Error. SNR- 10, P.~ -0.30, at t,+
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FILTER VS ACTUA. ERROR (CM OFFSET)
FDN 0,300/FIN 0.000178/TMN 0.000178/OFF 67/PC 15/Run 1245
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Figure C.4.1 2.01 pm Doppler Return One-State Filter Offset Error with SNR - 4, P. - 0.0
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Figure C.4.2 2.01 pm Doppler Return One-State Filter Offset Error, SNR - 4, P. - 0.0 at t,
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ESTIMATED OFFSET-PL.... POSITION (+/-)-SIGMA
FDN 0.300/FMN O.000178/TMN 0.000178/OFF 87/PC IS/Run #245
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Figure C.4.3 2.01 ~Ini Doppler Return One-State Filter Offset Erro, SNR -4, P.1 0.0 at 1,+
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FILTER VS ACTUA_. ERROR (CM OFFSET)
VDN 0.300/F?4N 0.000170/TNN 0.000170/OFF 67/PC 15/Run 0250
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Figure C.4.4 2.01 pm Doppler Return One-State Filter Offset Error with SNR - 4,P, 0.05
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Figure C.4.5 2.01 t~m Doppler Return One-State Filter Offset Error, SNR-4, P., 0.05,a i



ESTIMATED OFFSET-PL-b POSITION (+/-) SIGMA
FON 0.300/FMN O.00017S/TMN 0.000178/OFI 87/PC 15/Run #250
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Figure C.4.6 2.01 jim Doppler Return One-State Filter Offset Error, SNR-4, P, - 0.05, at t,÷
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FILTER VS ACTUA&. ERROR (CM OFFSET)
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Figue C.4.7 2.01 iun Doppler Return One-State Filter Offset Erior with SNR - 4, P. - 0.30
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Figure C.4.8 2.01 pmn Doppler Return One-State Filter Offset Error, SNR-4, P,~ 0.30, at t,'
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ESTIMATED OFE'SET-PL6- POSITION (1)SIGMA
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Figure C.4.9 2.01 pin Doppler Return One-State Filter Offset Error, SNR-4, P,- 0.30, at t,+

C-30



•~~~~. . ........ . ......

. .. . .. ...... .

-............

:':~ ~ ~ ~ .:." ... .... ...... :. .:.

:..:~~~~. .. ..... ::...".. .

.:: ,, :. , : .:.: .}: ; . .. .. ..

C-31



FILTER VS ACTUAL ERROR (CM OFFSET)

FDN 0.300/FMN O,000178/TMN 0.000176/OFF B7/PC 15/Run #154
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Figure C.5.1 10.5 Pun Doppler Return One-State Filter Offset Error with SNR - 10, P, 0.0
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Figure C.5.2 10.5 lim Doppler Return One-State Filter Offset Error, SNR - 10, P,. - 0.0 at t,
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ESTIMATED OFFSET--PLUj POSITION (/)SIGMA
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Figure C.5.3 10.5 pim Doppler Return One-State Filter Offset Error, SNR -10, P., 0.0 at t,+
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FILTER VS ACTUAL ERROR (CM OFFSET)

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #159
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Figure C.5.4 10.5 gint Doppler Return One-Stat Filter Offset Error, SNR - 10, P,, - 0.05
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Figure C.5.5 10.5 jn Doppler Return One-State Filter Offset Error, SNR-10, P. - 0.05, at ti
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ESTIMATED OFFSET-PLUo POSITION (+/-) SIGMA
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Figure C.5.6 10.5 pun Doppler Return Onc-State Filter Offset Error, SNR-10, P, -0.05, at ti÷
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FILTER VS ACTUAL ER.ROR (CM OFFSET)
FDN 0.3o2/rMm O,000178/TMN 0.000178/07r I7/PC 15/Hun 0368
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Figure C.5.7 10.5nDope Returu One-State Filter Offset Errooe, SNR 10, P, - 0.30
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Figure C.5~.8 10.5 pmn Dopp~ler Return One-State Filter Offset Frnr SNR-10, P, 0.33, at t,-

C-36



ESTIMATED OFFSET-PLU. POSITIOH (+/-) SIGMA
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Figure C.5,9 10.5 p.un Doppler Return One-State Filter Offset Error, SNR- 10, P, -0.30, at tl÷
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FILTE R VS ACTUAL ERROR (CM OFFSET)
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Figure C.6.1I 10.5pmr Doppler Return One-State Filter Offset Error with SNR -4, P., - O
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Figure C.6.2 10.5 pim Doppler Return One-State Filter Offset r~ror, SNR - 4, P,, 0.0 at t1
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ESTIMATED OFFSET-PLUS POSITION (/)SIGMA
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I. A
N M WT1~

-0.2-----

Figure C.6.3 10.5 tun Doppler Return One-State Filter Offset Error, SNR -4, P.- 0.0 at tj4+
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FILTER VS ACTUA". ERROR (CM OFFSET)
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Figure C.6.4 10.5 pim Doppler Return One-State Filter Offset Error, SNR -4, P., - 0.05
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Figure C.6.5 10.5 pim Doppler Return One-State Filter Offset Error, SNR-4, P,- 0.05, at ti'
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ESTIMATED OFFSET-PLo..., POSITION (+/-) SIGMA

0.OFN 0.300/FMN 0.000178/TMN 0.000116/OFF 67/PC 15/Run 0196

0.43-

E
R 0.

R

0.0

N

0.0- V

x

L

S

-0 2-

0 24 to1

TIME~ IN SECONDS

Figure C.6.6 10.5 gm Doppler Rewrn One-State Filter Offset with SNR 4, P, 0.05, at t,
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FILTER VS ACTUAL ERROR (CM OFFSET)
TON O.302/Fk4N ooool78/TNN O.00017a/oIF 67/PC 15/Run 1397

1.0-

E

IR

0.6

P

I

X 0.4-
E
L

0.2-

TIME IN SECOODS

Figure C.6.7 10.5 tun Doppler Return Onc-State Filter Offset Error with SNR -4, P,,, 0.30

E~STIMATED OF'FSET-t4IMUS POSITION (+/-) SIGMA

VON O.302/Ft4N 0.000178/TMN 0.000178/OFF 67/PC 15/Run #397

Af . iM týAtA .

0

P

I

L

0 2 10

TIME IN SECONDS

Figure C.6.8 10.5 pm Doppler Return One-State Filter Offset Error, SNR-4, P,- 0.30, at t;
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ESTIMATED OPPSET-PLUS POSITION (+/-) SIGMA
FDN 0.302/FMN O.000170/TMN 0.000176/OFF S7/PC 15/Run 1397

0.5-

0.0-

R
R
0

N

x
x
E

L
S

-2.0 ' ' ' -

0 a 4 6 6 10

TXHM IN SECONDS

Figure C.6.9 10.5 pmn Doppler Return One-State Filter Offset Error, SNR-4, P. - 0.30, at t,+
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This appendix contains the offset error plots that resulted from 5 of the 11 tuning runs for

the two-state Mcdified MAP MMAF. For each tuning run, there are two sets of plots that are

respectively associated with the two states (the offset distance state and the plume speckle

reflectance bias state). With each set, there are the two types of plots, as discussed in Appendix

B. Table D. 1 lists the different values for the dynamics noise variances qd1I and qd,,22 that were

explored during the tuning efforts. For the initial tuning values, the filter dynamics variances were

set equal to the values mentioned in Sections 5.3.3.2 and 5.3.3.4 for each one-state filter. The

covariance of the discrete-time white Gaussian noise w,, given by Qd of Equation (5-39), is:

Qd= I1 0.0 (D.1)

0.0 qdf22

where

qa11  - offset dynamics noise variance

qdf 22  - bias dynamics noise variance

From Figure D. 1, it can be seen that these original tuning' values were overly conservative. The

variances were gradually decreased by an order of magnitude until the overall time histories of

rms errors and the filter computed-rms error matched well. As seen in Table D. 1, decreasing the

dynamics noise strengths qd',l and qd 22 produced negligible differences in performance; however,

the last entry was chosen based upon its performance plot in Figure D.25.

Referring back to Equation (5-56), the two-state modified MAP MMAF dynamics noise

covariance Q,,, in units of pixels 2, is given by:

[ 0.03 0.0 (D.2)

0.0 0.001
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Table D. 1 Tuning Values for Dynamics Noise Variances (in Pixels 2)

qdfJ I qd2 S2) RMS errors, t; RMS errors, t:, Figure No.
(pixels') (pixels) (pixels) (pixels)

0.7 0,7 0.1491 0.0032 D.1-.6

0.7 0.07 0.1491 0.0032 D.7-.12

0.7 0.007 0.1491 0.0032 NA

0.7 0.01 0.1491 0.0032 NA

.07 0.07 0.1491 0.0032 NA

0.07 0.01 0.1491 0.0032 NA

0.07 0.007 0.1491 0.0032 D. 13-.18

0.007 0.0007 0.1489 0.00319 D. 19-.24

0.01 0.001 0.1490 0.00319 NA

0.02 0.001 0.1490 0.00319 NA

0.03 0.001 0.1490 0.00319 D.25-.30
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FIL.TER VS ACTUAL, ERROR (CM OFFPSET)

~DJ ~ 2G0 P9N ' .9rN ) F 3-,PC 15R-Run IMM3

FD

P

TIME IN SECONDS

Figure D.1I Two-State Modified MAP N4MAF Offset Error, q,,(I 0.7. q# 22 =0.7

ESTIMATED OFFSET-MINU- POSITION (+/-) SIGMA
F0.1 ). 300/17.41 0-00 -*-OOl L ) 9. I 'OFF 8' PC IS, Run ommj

S ýj

-0 4-----

TIME ~NSECO)NDS
Figure D.2 Two-State Modified MAP MVMAF Offset Error at t,. qvI,, 0.7, qW.22 =0.7
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0STIMATED OFE'SET-PLW.. POSITION (/)SIGMA

FDN 0.300/F'.14 O.0O0t'8/T.MN 0.0O0178/Ol'F 87/PC I.S/Run #mnfl

0 02-

R

-A IV

14 0 00- 1 
ý A

II

0 1 1)

TIME tN SECONDS

Figure D.3 Two-StatQ Modified MAJO MMAF Offset Error at t,". q4.l, 0.7, qV22 0-07
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FILTER 'IS ACTL..ý ERROR (BIAS)

' :: .F'ý.: . )) ,-• TM' ). S. ' Ci rF I 'PC .5. Run 9rnm3

TIME IN SECON

FiueDA4 Two-Stat M~odified MAP MIMAF Bias Elmor, q,1,1, 0.7, qdf2 2 0.7

LOO1

ES I A E -A -. N S (- - I M

R

Pi

-0 I

02 4 6 8 :

TIME III SECONDS

Figure D.5 Two-Statm Modified MAP MMAF Bias Error at, q1t, 0.7 q. 22 - 0.7
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ESTIMATED BIAS-, ,.US (-/-) SIGMA
FON 0.300/FMN 0O.000178/TMN 0.000178/OFF 87/PC 15/Run Imm3

0 
41

-41

E
R
R 0 2-
0
R

I

x 0 t-1-ý ,

H

P

x o
E•
L
s

-0. L

1
-o 2 1. .! "4 " -

0 2 4 6 S to

TIME IN SECONDS

Figure D.6 Two.Stame Modified MAP MMAF Bias Error a t,, qr, - 0.7, q 0.7
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FILTER VS ACTUAL. cRROR (CM OFFSET)

)~ ~ . )O I~ ~MN )~'>V~;F~ " Pin fcm5

TIME IN SCO D
Figur D.7) Tw-Sat Modfie MA MMFOfe roqf 107 200

ESIAERFSTM~ -P~TO IM

8T ME INEOD

F. . MN 0~ 0 00 1.iTI 0 ~00 1 8 /0F 8/P C 15 -'R un cm 5
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ESTIMATED OFEFSET-PL-. POStItON (~/)SIGMA

FDN O.300/FMN O.00017,8,TMN 0.00017,8/OFF 87/PC IS/Ru% 0cin5

E 0 0

RR

R

R I/M

x

a0 6 IN t o

rmINSECONDS

Figi~re D.9 Two-State Modified MAP MMAE Offset Efror at t:+, q4.,, a 0.7. IV22 0.07
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FILTER VS ACTu..L ERROR (BIAS)
FDN "3OQ. /FM N 0.0 00 78,' T N 0. 000 18,'OFF 8/PC 15/Run 0cmn5

., 5--- - -

R -

R 0 4-:.

R

R

r

NtM 0N SECN

IX 0 2-j

L

S

0 1-

0 0 ' " 1 -•

0 4 6$1o

TIME IN SECONDS

Figure D.10 Two-Stame Modified MAP MMAF Bias Error. q,.,, 0.-7, q4 22 " 0.07

ESTIMATED BIAS-..INUS (-/-) SIGMA
FDN 0. 300/FMN 0.0001 78/TMN 0. 0O00 8/OFF 87/PC 15/"ur' .cm5

I4

0
P -J
E

R

R

I

P

I-I

X 0.O-

L

"-0 1- -. .

-0 f l

TI''ME I[N SECONDS

Figure D.1I1 Two-Stme Modified MAP MMAF Bias Error at t*,' q, 1, 0.7. qu z2 0.07
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ESTIMATED BIAS-. LUS (÷/-) SIGMA

FDN ).300,'FMN 0.0001.78/TMN O.O001"8/OPF 67/PC I5/Run 4cm5
0 4

R

0

L
S

I I I

.0 1-l

4 6 1

TIME IN SECONDS

Figure D, 12 Two-Staz Modified MAP MMA" Bias Error at t, qv 0.7, q=22  0.07
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FILTER VS ACTUAL LRROR (CM OFFSET)

Ff) O. 300,'FMNI O.O001qTMN 0.O000 !8/OFF 8 /PC 15/Run mm8

E

S -j

L
S

0 1-

0 a I4et

TIME IN SECONDS

Figare D.13 Two-State Modified MAP MM" Offmt Error, q,, 0.07, qv 2ý= 0.007

ESTIMATED OFFSET-MINb., POSITION (+/-) SIGMA
FDN 0,300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #cm8

0 
4 

,

R

0 0
R

N 0

L - -

S

-o I " "I' - • •1 ' ' . .

0 4 6 4

TIME IN SECONDS

Figure D.14 Two-State Modified MAP MMAF Offset Error at ti, qv 1 0.07, qV22  0.007
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ESTIMATED OFFSET-PLu. POSITION (b/-) SIGMA

0 FDN 0.300/FMN 0.000178,TM•J 0.0001'8/OFF 87/PC 15/Run 0c m8
0 01-

R
R I I

R I II

0

.A/
N lvq

yI

I ' i

x

L -

-0 02-f i
a 2 46a1

TIME IN SECONDS

Figure D.l1 Twa-State Modified M"P MMAW Offset Error at ti-, q# I, - 0.07, q4.22 -0.007
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FILTER VS ACTL..,- ERROR (BIAS)

-F .N 3 00.i/FMN 0.000 1 8 TMN 0 ,000 18/OFF 8"/PC 1 /Run gcm8

P.

R

'1

P 0 2

E

S

0 4 6 10

TIME IN SECONDS

Figure D.16 Two-Stare Modified MAP MMAF Bias Error, q., - 0.07, qdf 22  0.007

ESTIMATED BIAS .. iNUS (+/-) SIGMA

FDN 0.O00/FMN 0.000178/TMN 0.000178/OF' 87/PC 15/Run 4crn8
0 4

S-I

4

4

R
R 0 2-

0
R

I

-0 0"

L

0 2 ,$ 6 10 l

TIME IN SECONDS

Figure D. 17 Two-Stam Modified MAP MMAF Bias Error at t , q•I, - 0.07, q, 22 " 0.007
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ESTIMATED BIAS -.US (/)SIGMA

FD,'J 0. 300/P'MN 0.000I78/*tMN 0.0001ý8/OFF 87,'PC 2.5/Run qcme
0 4

R 0 2-

0I

x

-0 2 S

Figure D. 18 Two-State Modified MAP MMAF Bias Error at t,+, qr, 11 0-07, qV22  0.007
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FILTER VS ACTUA_ ERROR (CM OFFSET)
FDN 0.3O0/FXN O-000170/T.4 O.000178/OrF 87,'PC 1I/Run ic12

I
R

N

P 0 2-

x
E
L

S 0.1i0. ! .............
o 2 4 6 8 10

TIME IN SECONDS

Figure D.19 Two-State Modified MAP MNAF Offset Error, q,,,, - 0.007, qd, 22 0.0007

ESTIMATED OFFSET-MIN., POSITION (+/-) SIGMA
FDN 0.3O00C/FMN 0.000178/TMN O.000178/OFF 87/PC 1.S/Run Ic12

0

R

N v.v

P

L -0. 2-

-0 4 l

TIME IN SECONDS

Figure D.20 Two-State Modified MAP MMAF Offset Error at t.qv,1 m 0.007.q,€2 2 0.0007
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ESTIMATED OFFSET-PL•. POSITION (+/-) SIGMA
FDN 0. 300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run C1.2

0 02-

0 01-

R

0.00-

x

L 01
II

-0 02L-o I ' I I "" '' 1 . . .

0 4 6 8 10

TIME IN SECONDS

Figure D.21 Two-State Modified MAP MMAF Offset Error at t,*,qv- 0.0O7.q 22 - 0.0007
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FILTER VS AC., ERROR (BIAS)
FDN 0.300/FMN 0.0OOI78/TXMN 0.000178/OFl' 87/PC 15,'R~n d,12

4-,

R
R

0 *
R 0. 31

L
S 01

TrIME IN SECONDS

Figure D.22 Two-State Modified MAP MMAF' Bias Error, q1r11 - 0.0 qdt22  O .0007

ESTIM'ATED BIAS-M~INUS (-/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 37/PC 1S/Run #lC12

0.3-

0.2
0

01

N

x

L

TIME IN SECONDS

Figure D.23 Two-State Modified MAP MMAF Bias Error at it'. qvj, 0.007, qvzz 0.0007
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ESTIMATED BIAS .LUS (÷/-) SIGMA
FDN O.300/FMN 0 0OOO181T.4N O.QO00178/OFF 87,'PC 15/Run 4cJ.2

0 ]

iii

R 01

R 0 0-

x

L

-0 1-

0 2 4 6 8 1

TIME [N SECONDS

Figure D.24 Two-State Modified MAP MMAF Bias Error at t,:. q., - 0.007. q4,22 " 0.0007
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FILTER VS ACTUA- ERROR (CM OFFSET)

FDN 0 300/FMN 0 000. 178/TMN 0 0 0017 8OFF 87/PC 15/Run IC14
0

• •-

R

4

N

r
x

L
S

0 1

TIME IN SECONDS

Figure D.25 Two-State Modified MAP MMAF Offset Error, q~,,,, 0.03, q4122 -0.001

ESTIMATED OFFSET-MIN..j POSITION (+/-) SIGKA
FON 0 .3001lFMN O.000 J78/TrMN 0.000 178/oFF 87/PC 15/Run IC1.4

0.4-

E 0 2-

E

R

R
0

I A Il

p
I

-04-

0 4110

TIM4E IN SECONDS

Figure D.26 Two-State Modified MAP MMAN Offt Error at 4 qI, - 0.03, qW2 2 0.001
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ESTIMATED OFFSET-PL.- POSITION (÷/-) SIGMA

FDN 0.300/FHN 0.000178/TMN 0.0001 7 8/OFF 87/PC 15/Run 4CL4

R
R

"N 0

p

x

L -0 01-
s

0200 4 6 01

TIME IN SECONDS

Figure D.27 Two-Stae Modified MAP MMAF Offset Error At t,, qt'w n 0.03. q- 22 0.001
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FILTER VS ACI..L ERROR (BIAS)
FDN 0. 300/FMN 0.000178/THN 0.0001"8/OFF 87/PC 15/Run *C14

j4-1

R
R
P. 0
R O -

I

N

P 0. 2-
I

x

L

S
0.1-

0 4 6 810

TIME IN SECONDS

Figure D.28 Two-State Modified MAP MMAF Bias Error, q,, = 0.03. q# 22 = 0.001

ESTIMATED BIAS ..,INUS (+/-) SIGMA
FON 0. 300/FMN 0.000178/TMN O.000178/OFF 87/PC 15/Run 0C140.3-

02-

E

R
R

0R 0. 1-i

N

P 0 0-L-AW.

x

E

L
S

-0 1-

0 3 4 6 S 10

TIME IN SECONDS

Fiiurc D.29 Two-State Modified MAP MMAF Bias Erro at t, qr, - 0.03, qV22  0.001
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ESTIMATED BIAS .LQS (+/- SIGMA
VDN O.300/FMN 0.000178/T.%N 0.000178/OPF 87/PC 15/Run IC14

0.2-

R
0R
R 0.1-

x

L
S

-0o1

0 a4 6a10

TIME IN SECONDS

Figure D.30 Two-Stme Modified MAP MMAF Bias Error at t,+, q,, - 0.03, q, 22  0.001
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This Appendix contains the error plots of the two-state center-of-mass Modified MAP

MMAF, wherein the probability-of-miss, P,, impacts both the low-energy speckle return and

Doppler return. In this case, the "miss" signifies those circumstances in which the low-energy

laser return does not exist due to bending of the return signal as it propagates through the 2000

km range, or due to noises in the receiving equipment. The Appendix is divided into sub-

appendices that correspond to different values of low-energy laser wavelength and SNR. Each

wavelength with a given SNR, is further separated into three values of Probability-of-Miss, Pm,.

The plots show the relationship, in error mean ±1 standard deviation values (in pixels), of the

errors between the filter estimated and true offset distance from the intensity centroid to the

hardbody center-of-mass, and errors between the filter's estimate and the true bias caused by the

plume's speckle reflectance. Ibis appendix is divided into the following sub-appendices:

Sub-Appendix Category

E.1 0.53 p.m Wavelength, SNR = 10

E.2 0,53 ptm Wavelength, SNR = 4

E.3 2.01 gpm Wavelength. SNR - 10

E.4 2.01 .im Wavelength, SNR 4

E.5 10.5 pim Wavelength, SNR = 10

E., o10.5 pm Wavelength, SNR = 4

E-2



.. p- wt .... r..o...s
M.d.fed.MA.MMA
.. ... .. .. w... i. ... .

aSNR=14.
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FILTER VS ACTUA.. ERROR (CM OFFSET)
FDN O.300/F!4N 0,00017$/TMN 0.000173/OFF 87/PC 15/Run IcOl

0.5-

0. 4

0
R 0.3-

N

xoi

L
S

TIME IN SECONDS

Figure E.1.1 0.53 pm Two-State Modified MAP MMVAF Offset ErrorSNR-1O,P* -0.0

ESTIMATED 0O'FSET-MIN.j POSITION (/)SIGMA

0.4 DN O.300/FMN 0.000178/rMI, 0.000178/OFF 87/PC 15/P~un #c01

E 0.2-

0 

Vý

x f

S

-0.4-
0 24 0 10

TIME IN SECONDS

Figure E 1.2 0.53 pmn Two-Stat Modified MAP N4MAF Offset Ercor,SNR-IO0,P. -0.0, at t,
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ESTIMATED OFFSET-Pl..,ý POSITION (1)SIGMA
02FDN 0.300/FMN 0.000178/TR4N 0.000178/OFF 87/PC IS/Run *cOI

E 0.02-

R

R
0
R

x

S

-0.02

0 24 6 10

TIME IN SECONDS

Figure E. 1.3 0.53 p±m Two-State Modified MAP MMAF Offset Error,SNR- 10,Pa. -. O,at tj4*

FILTER VS AC1..AL ERROR (BIAS)

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 57/PC 15/Run *coi
0.5~-

0.4-

R

0
R 0.3-

P 0.2-

x
E
L

0.0

2 ~~TINE IN SECON'DS 01

Figure E. 1.4 0.53 pmn Two-State Modified MAP MMAF Dias r-zm~,SNR-1O,P .-0.0
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ESTIMATED BIAS .d1NUS (+/-) SIGMA
FDN 0.300/FMN 0,000176/TMN 0.000178/OF 07/PC 15/Run #c01

0.2

E
R
R

0

R 
0.1-

N

I

x

L
S

-0.2 !

o a 4 6 a 10

TIME IN SECONDS

Figure E.1.5 0.53 lim Two-State Modified MAP MMAF Bias Error,SNR-10,P.-0.0, at ti

ESTIMATED BIAS 2LUS (+/-) SIGMA
FDN 0.300/FlH O.000178/TMN 0.000178/OFF 87/PC 15/Run #c0l

0.3-

E

0I
R

N

0.0

x
E
L
S

-0.2-
0 2 4 6 9 10

TIME IN SECONDS

Figure E.1.6 0.53 iun Two-State Modified MAP MMAF Bias ErroSNR-10,P.,-0.0,at t,'
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FILTER VS ACTUAý eRROR (CM OFFSET)
FON O.300/FMN O.0OO178/TMN 0.OOO178/OFF 87/PC 15/Run sc06

0.4-

E
R
R
0
R 0.3-

N

p 0.3

x
E I
L

0. 1

02 4 1

TIME IN SECONDS

Figure E.l1.7 0.53 pm Twoý-State Modified MAP MMAF Offset Error, SNR -10, Pa. - 0,05

ESTIMATED OFFSET-MINu- POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/'rMN 0 000178/OFF 87/PC IS/Run Ac06

0.4-

0.2-

R

Rt

x
E

L 02
S

-0.44- I
0 2 a41

TIME IN SECONDS

Figure E. 1.8 0.53 tun Two-Stiade Modified MAP MMAF Offset Error,SNR- I 0P. -. 05,at tI'
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ESTIMATED OFFSET-PLL. POSITION (4/-) SIGMA

FEN 0.300/FMN 0,000178/TMN 0.000178/OFF 07/PC 15/Run *c06
0.4

0.3-

E
R 0. 2--

R

0
R

N

0 .0

x
E

L
S

02 4 6S 10

TIoME IN SECONDS

Figure E.1.9 0.53pin Two-State ModifEd MAP MMAF Offset Error,SNR-IOP. -O.O5,at t,*

FILTER VS ACTU.,L ERROR (BIAS)
FDN 0.300/FMN 0.000178/TMN 0.000178/OF 87/PC 15/Run #c06

0.5-

0.4-

R
R
0
R 0.3-

I

N

P 0 2-
I

x
E

L
S

0. 1-

0 0 ' ' " '] ' 'I'

o2 4 10 •

TIME IN SECONDS

Figure E.1.10 0.53 I±m Two-State Modified MAP MMAF Bias Error, SNR - 10, P, - 0.05



ESTIMATED BIAS- LNUS (+/-) SIGMA
4FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run *c06

0.4--

0. -

E
R
R 0.2
0
R

I

N 0.1-

P

0 O.O-

E
L
S

-0.2 ' . . ' - I••

02 4 6 a 10

TIME IN SECONDS

Figure E.1.11 0.53 jn Two-State Modified MAP MMAF Bias Error,SNR-10,P.-0.05,at ti

ESTIMATED BIAS- d.US (+/-) SIGMA
FDN 0.300/FMN O,000178/TMN 0.000178/OFF 87/PC 15/Run #c06

0.4

0.3-

14 0.2- -

0
R

I

N 0.1-

p
I
X oo

E 
-

L

-0.1-

0 2 4 610

TIME IN SECONDS

Figure E 1.12 0.53ptn Two-State Modified MAP MMAF Bias Error,SNR-10,P-..05,at tj*
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FILTER VS ACTUAL- ERROR (CM OFFSET)
FDN 0.300/F?4N 0.000178/TMN 0.000178/OFF 87/PC 15/Poin 1c09

1.2 .] 1-

1.0

E
R
R 0.6-

0
R

N 0.6-

p

I
X 0.4-

L

0.2-

0. 0-

0 2 6a 10

TIME IN SECONDS

Figure E. 1. 13 O.53pLm Two-State Modified MAP MMAF Offset Error, SNR -10, P.1 - 0.30

ESTIMATED OFFSET-MINU.. POSITION (+1-) SIGMA
FDN 0.300/F'MN 0.000178/TMN 0.000178/OFF 87/PC 115/Run 1c09

0.5

H ýj"ýAA. ý ý

40 1
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ESTIMATED OFFSET-PLt- POSITION (/)SIGMA
VON 0.300/FMN 0.000178/TMN O.000178/OFF 87/PC 15/Run #c09

0.5-

0

R

N

x

S

0 2 4 6 a 1

TIME IN SECONDS

Figure E.1.15 O.53tun Two-State Modified MAP MMAF Offset Error,SNR-1O,P, -O.30,at tl+

F'ILTER VS ACTL,.wj ERROR (BIAS)

05FDN 0.300/l'HN 0.000118./TMN 0.000178/OFF 87/PC 15/Run lc09

0.4-

E

0

p 0.2-

x

L
S

0.

TI?4E IN SECONDS

Figure E.1. 16 0.53pim Two-State Modified MAP MMAF Bias Error, SNR -10, P., - 0.30
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ESTIMATED BIAS-,-,INUS (+/-) SIGMA

0.5FDN O.300/PMN 0.000178,/TMN 0.000178/OrR 87/PC 15/Run Nc09

0.0 0 -

E 
V

R

R
0

N

E

S

024 6 810

TIME IN SECONDS

Figure E. 1.17 O.53pn' Two-State Modified MAP MMAF Bias Error,SNRsmIO,P~,-0.30, at t;-

ESTIMATED BIAS-.LUS (+/-) SIGMA

FON O.300/FMN 0.00017B/TMN 0.000178/OF'P ' 7/PC 1S/Run Nc09
0 05-

AA. W00ý,

0

I
N

I

'C

L

024 6 10

TIME IN SECONDS

Figure E. 1. 18 0.5 31im Two-State Modified MAP MMAF Bias Ezror,SNR- 10,P. mmO.30,at t,+

E- 12



Apedx 4

wostate ........r-, fAa$

M udifi.AXA)' M
* with.R

..0 ...3 . .i ........... R e-r .M.. ... r.e....n...
.tN~ .4

.~ ~ ~ E 13. .......



FILTER VS ACTUAL, ERROR (CM OF'FSET)

0. ON O,300/FMN O.000176/TMN 0.00017e/Orr 87/PC 15/Run jc28

0.4-

E

10

10 0.3-

N

x

L

0 24 6 a 10

TIM4E IN SECONDS

Figure E.2.1 0.53 pm Two.-State Modified MAP MMAF Offset ErrorSNR-4,Pa. -0.0

ESTIMATED OFFSET-MIN,. POSITION (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run fc28
0.4-

E 0.2

0

p
I

x
L

S

4 10

TIME IN SECONDS

Figure E.2.2 0.53 pm Two-State Modified MAP MMAF Offset Errar,SNR-4,P, -0.0, att

E- 14



ESTIMATED OFFSET-Pl~u.. POSITION (+/-) SIGMA
PON O.300/rmN 0.000178/TMN O.00017s/OFF 8l/PC 2.5/Run OC20

0.02-

0 01-

R 0. 00-A A fAA- 1

N 0.01-

N

L

0246 S10

TIME IN SECONDS

Figure E.2.3 0.53 pm Two-State Modified MAP MMAF Offset Error.SNR-4,P, -O.O,at t'*

FILTER VS ACT-. L ERROR (BIAS)
F'DN O.3O0/F'MN 0.000178/TMN 0,000178/OFF' 87/PC 15/Run lc28

0.4-

R

0.
R 0.3-

p 0.2-

x

L

0.1-

TIME IN SECONDS

Figure E.2.4 0.53 pim Two-State Modified MAP MMAF Bias Error,SNR'-4,P,-O.O
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ESTIMATED BIAS .. INUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OPF B7/PC 15/Run lc28

0.3- -

0.2-

R
R
0
H 0.1-

N

P 0.0-
I
x
E
L
S

-0.1

-0.2- - ' I ' I'" '

04 6 10

TIME IN SECONDS

Figure E2.5 0.53 pim Two-State MCdlild MAP MMAF Bias Error,SNR-4,P,-0.0, at ti

ESTIMATED BIAS-.LUS (+/-) SIGMA
FDN 0.300/PMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #c28

0.1-

E

0
R Ol

I

x

L
S

4 6 6 10

TIME IN SECONDS

Figure E.2.6 0.53 pm Two-State Modified MAP MMAF Bias Ernr,SNR.-4,P,-0.0,at t,*
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FILTER VS ACTUAA.. ERROR (CM OFFSET)

05FDN 0.300/FMN O.000178/TMN O.00017e,'orr 67/PC 15/Run #c33

0

I
x

L
S 0.

024 6 S 10

TrIME IN SECONDS

Figure E.2.7 0.53 pmn Two-State Modified MAP MMAF Offset Error, SNR -4, P,- 0.05

ESTIMATED OFFSET-MINuo POSITION (+/-) SIGMA
FDN 0.300/F'MN 0.000176/TMN 0.000176/OFF 07/PC IS/Run #c33

E 02

R

R
0

R

x

L

-0.4-
0 2 4 6 2 10

TIME IN SECONDS
Figure E.2.8 0.53 juii Two-State Modified MAP MMAF Offset Error,SNR-4,P,-0.05,at t;
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ESTIMATED OFFSET-PLý, POSITION (+/-) SIGMA
0. FN O.300/FI4N 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1c33

0.3-

E

0

N

L
S

-0.2

0 2 4 I 1

TIME IN SECONDS

Figure E.2.9 0.5 3pIz Two-State Modified MAP MMAF Offset Egrra,SNR-4,P1 1 -O.05,at t:*

FILTER VS ACTL..L ERROR (BIAS)
FDtJ 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run lc33

0.4-

E

0

I

N

0,
I

x

L

S
0.1

10.0- 1

TIME IN SECONDS

Figure E.2.10 0.53 gmn Two-State Modified MAP MMAF Bias Error, SNR - 4, P. 0.05
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ESTIMATED BIAS .LNUS (+/-) SIGMA
FDN 0.300/FkN 0.000178/TMN 0.000178/OrF 87/PC 15/Run #c33

0.4-

0.3-

R

p

x 0.0-

I

L

S

-0.1-

-0 .2. .. . I'(' . .

4 2 10

TIME IN SECONDS

Figure E.2.11 0.53 jim Two-State Modified MAP MMAF Bias ErrorSNR-4,P, -0.05,at ti

ESTIMATED BIAS .LUS (+/-) SIGMA
FDN 0.300/FNN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1c33

0.4-

OIA-

0.3

R
R 0.2-

0
R

I
0.1-

N

p

r

S

0 2 4 6 1 10

TIME IN SECONDS

Figure E.2.12 0.531.m Two-State Modified MAP MMAF Bias Erro,SNR-4,P.-0.O5,at t1,

E-WI



FILT4ER VS ACTUALý ORROR (CM OFFSET)
FDN O.300/FMN 0,000178,/TMN 0.000170/OFF 87/PC 15/Run Ic36

R 0.

0

I
N 0.6-

I

x 04-

E
L

0.2-

0. 0-

I 'E IN SECCrNDS

Figure E.2.13 0.531Lm Two-State Modified MAP MMAF Offset Error, SNR - 4, P, -0.30

ESTIMATED OFFSET-MIN,... POSITION (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #c36

R

0
R

N

E
L

S

02 4 .14

TIME IN SECONDS

Figure E.2.14 0.53gxm Two-State Modified MAP MMAF Offset Error,SNR-4,P. -0.30, at rj*

E-20



ESTIMATED OFFSET-PLL,- POSITION (+/-) SIGMA
FDN O.300/FMN O.000178/'XMN O.0OO178/OFF 87/PC 15/Pun #c36

R

R

0
R

L
S

024 9 10

TIME IN SECONDS

Figure E.2.15 O.53ýLm Two-State Modified MAP MMAF Offset Error,SNR-m4,P, -O.30,at t,"

FILTER VS ACTL,..L ERROR (BIAS)

FDN 0.300/FMN O.000178/TMN O.000178/OWF' 87/PC 15/Run Ic36

0.4-

R
K
0
p 0.32

I
N

P 0. 2

x

S

0.01

TIME IN S3ECONDS

Figure E.2.16 O.53pmr Two-State Modified MAP MMAF Bias Error, SNR - 4, P. 0.30
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ESTIMATED BIAS ..INUS (+/-) SIGMA

F.s DN 0.300/FMN 0.000178/TMNt 0.000178/OFF 87/PC 15/Run 6c36

0. 05-kyl

0

NR - -5

I

N

L
S

024 6 10

TINE IN SECONDS

Figure E.2, 17 O.53pxn Two-State Modified MAP MMAF Bias Error,SNR-4,P., -0.30, at t,

E~STIMATED BIAS - tUS (4/-) SIGMA

EON 0.300/FMN 0.000178/TMN 0.000176/OPFF 87/PC 15/Hun Ic36

0

L

S

TIME IN SECONDS

Figure E.2.18 O.531i~m Two-State Modified MAP MMAF Bias Error,SNR-4,P,-0.3O,at zj*
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FILTER VS ACTUAL, ERROR (CM OFFSET)
FDN O.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run Oc73

0. 5--

0.4-

E
R

0
R 0.3-

p 0. 2
1
x
E
L

S 0. 1

0.I0

0 2 6 610

TIME IN SECONDS

Figure E.3.1 2.01 pin Two-State Modified MAP MMAF Offset Error,SNR-1OP,-0.O.

ESTIMATED OFFSET-MINU., POSITION (+/-) SIGMA

PFDN 0.300/FMN' O.000178/TMN 0.000178/OFE' 87/PC I5/Run #c73
0.4-

0

N 00

p
I

SL -0-2- y)

-0.4-
0 2 4 5S1

TIME IN SECONDS

Figure E.3.2 2.01 pin Two-State Modified MAP MMAF Offset Error,SNIR-I 0,P, -.0.0, att,'
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ESTIMATED OFFSET-PLu.. POSITION (+/-) SIGMA

FDN O.300/FMN 0.000178/TMN 0.000178/OFF 81/PC IS/Run Ic73

0. 04-

0 02

R

I
N

p
I

E
L

246 S10

TIME IN SECONDS

Figure E.3.3 2.01 pim Tw o-State Modified MAP MMAF Offset Effor,SNR- I0,P,, -O.O,at t,*

FILTER VS ACTUrL ERROR (BI AS)

F~DN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run lc73
0.5

0.4-

E

R

0

R 0.3-

NP 02-

x
E

L

S

TIME IN SECONDS

Figure E.3.4 2.01 jim Two-Statc Modified MAP MMAF Bias Error,SNR-IO0,P. -0.0
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ESTIMATED BIAS-.dINUS (-)SIGMA
03FDN 0.300/FMN 0,000178/TMO 0.0OO178/OFFI 87/PC 15/Run flc73

E

R

R

0

R .1

N

p

E

L

04 6 a 10

TIME IN SECONDS

Figure E.3.5 2.01 jun Two-State Modified MAP MMAF Bias Error,SNR-10,P,, -0.0, at t,'

ESTIMATED BIAS-.LUS (+/-) SIGMA

FDN O.300/FMN O.000170/TMN 0.000178/OFF 87/PC 15/Ruti 1c73

0.2-

E

0
R 0.1

N

S0.0- V

L

024 6 S10

TIME IN SECONDS

Figure E.3.6 2.01 tun Two-State Modified MAP MMAF Bias Error,SNR- 10,P. -0.0,at t1*
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FILTER VS ACTUAL e~RROR (CM OFFSET)
FON O.3O0/FMI4 0.000176/TMN 0.000178/oFF 87/PC 15/Run #c7e

0

N

p 0.

x

L

TIME IN SECONDS

Figure E.3.7 2.01 pm Two-State Modified MAP MMAF Offset Error, SNR 10, P,, 0.05

ESTIMATED OFFSET-MINU- POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Pun Nc78

04-

0

I AII1,1w~lfmWl
N 0. 0--l

xI
E

L _0.2-
S

-0.4-
0 2 4 10

T'IME IN SECONDS

Figure E.3.8 2.01 pim Two-State Modified MAP MMAF Offset Error,SNR-'I0,P, -0.05,at tf1
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ESTIMATED OFFSET-PLV.. POSITION (1)SIGMA
FDN O.300/FMN O.000178/TMN 0.00O178/oF'p 87/PC 15/Run Ic7e

0.4-

0

N

p

x

E 0
L

S

-0.3

0 42 81
TIME~ IN SECOND~S

Figure E.3.9 2.0 1 gm Two-State Modified MA MMAF Offset Eamr,SNR-1I0,P, -O.05.at il

FILTER VS ACTb,.b. ERROR (BIAS)

05FDN O.300/Ft4N 0.000178/TMN 0.000178/OFF 87/PC 15/Run Ic78

R
R

0

ft 0.3-

I
N

p 0.2-
I
x

E
L

0.0

04 6

TIME IN SECONDS

Figure E.3.10 2.01 pm Two-State Modified MAP MMAF Bias Error, SNR -10, P. 0.05
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ESTIMATED BIAS-..J.NUS (+/-) SIGMA

FON O.300/FMN O.000179/'rMN 0.OOQ178/OFF 87/PC IS/Run *C78
0. 3-. -

0

x
E
L
s

024 6 S10

TINE IN SECONDS

Figure E.3.11 2.01 lim Two-State Modified MAP MMAF Bias Erro,SNR'-10,P. -O.05,at :1-

ESTIMATED BIA5-.LUS (+/-) SIGMA
F'DN a.300/FMN 0.000178/TMN 0.000178/OFFE 67/PC 15/Run lc78

0. 3--

0.2-

E

0
R 0.

N

p

x

S

TIME IN SECONDS

Figure E.3.12 2.Ol1lm Two-State Modified MAP MMAF Bias Earor,SNR-10,P,, -O.05,at tr1
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FILTER VS ACTUAL sRROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMM 0.000179/OFF 87/PC 15/Run #cal

1.2-

1.0-

E

R
R 0.6

0
R

0.6-

P
I
X 0.4-
E
L
S

0.2-

02 4 6 $ l0

TIME IN SECONDS

Figure E.3.13 2.01 tim Two-State Modified MAP MMAF Offset Error, SNR - 10, P. -0.30

ESTIMATED OFFSET-MINbo POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #cel

0. 5

R
R -0.5-

0

R

I

N

P
I

E

L
S

-2.5' 1' ' ' '
2 4 4 1 10

TIME IN SECONDS

Figure E.3.14 2.01jim Two-Sate Modified MAP MMAF Offset Error,SNR-10,.-0.30, at t,
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ESTIMATED 0FFSET-PLi.- POSITION (*/1-) SIGMA

FDN 0.300/FMN O.000178/TMN 0.000178/OFF 67/PC 15/Run Ic~l

E

R

0

N

I

x

L

0 2 6 910

TIME IN SECONDS

Figure E.3. 15 2.0 ljgu Two-State Modified MAP MMAF Offset Error,SNR-10,P,,.-O0.30,at t:

FILTER VS ACTu..L ERROR (BIAS)

FDN O.300/FMN 0.000178/TMN 0.000i78/OP'F 87/PC IS/Run Ic 81

04-

R

0

R 0.3-

I

'p 0.2-

x

L

S

0.1 T

TIME IN SECONDS

Figure E.3.16 2.01pim Two-State Modified MAP MMAF Bias Error, SNR -10, P. -0.30
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ESTIMATED BIAS-,.INUS (+/-) SIGMA
FDN O.300/FMN O.000178/TMN O.0OO178/OvZF 62/PC 15/Run tool

0. 05-

R

0

N

x

L

S

02 4 661

'ITTUR ThJ ctr3flC

Figure E.3. 17 2.0 ljim Two-State Modified MAP MMAF Bias Error,SNR- 1O,P,, O.3O, at t,-

ESTIMATED BIAS-- .jUS (-I/-) SIGMA
FDN 0.300/FMN O.000178/TMN 0.000178/OFF 87/PC 15/Run 1c81

E
R

0

N

I

x
E

L
S

02 4 6 10

TIME IN SECONDS

Figure E.3.18 2.O0jgm Two-State Modified MAP MMAF Bias Error,SNR-10,P. -0.3O,at ti

E-32



ApenixL2

Z~w-$t... Cete-o .... lass

m....dI.-ed..PMMAF

. . .... w.

E-33



FILTER VS ACTUAL zRROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #clO0

0.5-

0.4-

E
R
R
0
R 0.3-

P 0.-

x
E

L

S
0.1

0 2 4 6 S 10

TIME IN SECONDS

Figure E.4.1 2.01 iun Two-State Modified MAP MMAF Offset Error,SNR-4,P -0.0

ESTIMATED OFFSET-MINL. POSITION (+/-) SIGMA
rDN 0.300/PMN 0.000176/TMN 0.000178/OFF 87/PC 15/Run tcl0O

0.4-

0.2-

E
R

0 .0 K .I k, Ai Iu

- 0.2-

I

x

L
S

-0.4

-oI'1.. I- I I'

0 4 6 1 10

TIME IN SECONDS

Figure E.4.2 2.01 lim Two-State Modifiei MAP MMAF Offset Error,SNR-4,P, -0.0, at t;
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ESTXMATED OFPSET-PLU... POSITION (/)SIGMA

0.1 PN 0,300/F'MN 0,000170/rMN 0.000178/OFF 87/PC 15/Run *cJ.00

0.0-

R

0
R

N

x

L. -0.2-
S

-0.31 II
0 2 4 6 8 10

TIME IN SECONDS

Figure E.4.3 2.01 pi.z Two-State Modified MAP MMAF Offset ErrorSNR-4,P, -0.O,at ti'

FILTER VS ACTU,w.j ERROR (BIAS)
FDN 0.300/0'MN 0.000178/TMN 0.000178/OFF 87/PC 15/Run jc100

0. 5-

0.4-

R

R

R 0.3-

I
N

p 0.2-

L
S

0.1-

0 2 4 6 a 1

TIME IN SECONDS

Figure E.4.4 2.01 tim Two--State Modified MAP MMAF Bias Error,SNR-4,P. -0.0.
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ESTIMATED BIAS- ,,INus (+/-) SIGMA
F'DN 0.300/FMN 0.000178/TMN 0.0001.78/OFF 07,'PC 15/Run OIi~00

0. 1-

0.2-

R

0

R 0.1-

I
N

E
L
S

024 6 1 1

TIME IN SECONDS

Figure E.4.5 2.01 pmn Two-State Modified MAP MMAF Bias Errar,SNR-4,P, -0.0, at t,*

ESTIMATED BIAS ,LUS (+/-) SIGMA

FON 0.300/FI4N O.000178/TMN 0,00D178/OFF 87/PC 15/Run IelOC
0.3-

0.2-

0

I

E

L
S

024 6 0

TIME IN SECONDS

Figure E.4.6 2.01 pmn Two-State Modified MAP MMAF Bias Error,SNR-4,P. -O.0,at ti*
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FILTER VS ACTUAL 6RROR (CM OFFSET)
VDN O.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #cl05

0.5-

0.4-

E
R
R
0
H 0.3-

I

N

P 0.2

E

L I
S

0.1

0.0

0 2 4 6 1 10

TIME IN SECONDS

Figure E.4.7 2.01 pn Two-State Modified MAP MMAF Offset Error, SNR - 4, P,- 0.05

ESTIMATED OFFSET-MINUb POSITION (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run IcO05
0.4]

0.2-

E

RoI

0 Lil A 11R Ai N

p -0.2-

E

L
S

-0.4-

-0.6 " -
02 4 6 010

TIME IN SECONDS

Figure E.4.8 2.01 Inm Two-State Modified MAP MMAF Offset Error,SNR-4,P, -0.05,at f,"
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ESTIMATED OFFSET-PLU.. POSITION (+/-) SIGMA
FDN O.300/FMN o.000179/TMN 0,000178/OFF 87/PC 15/Run OclOS

0.4-

0. 3

E

R 02

R

0

R

N

p

x

S

0 a 4 6 310

TIME IN SECONDS

Figure E.4.9 2.0 1pmn Two-State Modified MLAP MMAF Offset Error,SNR-4,P,.-0.05,at t1'.

FILTER VS ACTu..i, ERROR (BIAS)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #c1O5

0.5 -

0.4-

E

0

R 0.3-

N

p 0.2-

x

L

TIME IN SECONDS

Figure E.4.10 2.01 pKm Two-State Modified MAP MMAF Bias Error, SNR -4, P, -0.05
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ESTIMATED BIAS' .ANULU(~- SIGMA
FDN 0.300/FMN O.000178/TMN 0.00O178/OF'F 87/PC 15/RUn IC105

0. 3-

0.2-

E
p
R
0

R

0. - p a

x

L
S

TIME IN SECONDS

Figure E.4.1 1 2.01 pm±n Two-State Modified MAP MMAP Bias Error,SNR-4,P. -0.05,at ti'

ESTIMATED BIAS-..LUS (+/-) SIGMA

FON 0.300/FMN 0.000178/TI4N o.00017e/OFF 87/PC 15/Run #c105
0.3-

0.2-

R

0

R .1

N

I v
x

L

S

-0. 2--

0 2 4 6 S10

TimE IN SECONDS

Figure E.4.12 2.014~m Two-State Modified MAP MMAF Bias Effor,SNR-4,P,-0.05,at tl'
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FILTER VS ACTUAL- eRROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 81/PC 3.5/Run Oc3.08

0.8-

R

0

R 0.6-

I

N

P 0.4-
I
x

L

0.2-

024 6 1 1

TIME IN SECONDS

Figure E.4.13 2.01p±m Two-State Modified MAP MMAF Offset Error, SNR - 4, P,, 0.30

ESTIMATED OFFSET-MINI... POSITION (+/-) SIGMA
FON 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #cl08

E

R

0

I
N

E

L

S

0246 6 10

T'IME IN SECONDS

Figure E.4.14 2.01 tim Two-State Modified MAP MMAE Offset Error,SNR-4,P., -0.30, at t,



ESTIMATED OFFSET-PLL.. POSITION (+/-) SIGMA
FON 0.300/PMN O.000178/TMN 0.0002.7S/orp 87/PC 15/Run IclO8

E

0

R

N

p

x
E

L

0 aB 10

TIME IN SECONDS

Figure E,415 2.0 1 gm Two-State Mod if ied MAP MMAF Offset Error,SN R-4,P. -0. 30,at t,'

FILTER VS ACTU..u ERROR (BIAS)

VON 0.300/FMN O.000178/TMN 0.000178/OFF 87/PC 15/Run Oc108
0. 5-

0.4-

E

R

0
R 0.3

N

p 0.2-

x
E

L

S
0.1-

TIME IN SECONDS

Figure E.4.16 2.O11m Two-State Modified MAP MMAF Bias Error, SNR - 4, P, 0.30
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ESTIMATED BIAS ...LNUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/'rNN 0.000178/opP 87/PC 1.5/Run IC108

0.00- AA A W

E

R

0
R

I

I

E

L
S

TIME IN SECONDS

Figure E.4.17 2.01 Wn Two-State Modified MAP MMAF Bias Error,SNR-4,P, -0.30, at ti,

ESTIMATED BIAS-. iAS (+/-) SIGMA
FDN 0.300/FMN 0.O00178/TMN 0.000178/OFF 87/PC 15/Run Oc108

R 0.05-

0

I
N 01-o

p
T

L

S

024 6 310

TIME IN SECONDS

Figure E.4.18 2.O1pun Two-State Modified MAP MMAF Bias Error,SNRms4,P.'m.30,at t/*
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FILTER VS ACTUALý ERROR (CM OFFSET)

FDN O.300/FMN 0,00017R/TMN 0.000178/OFF 87/PC 15/Rur) #c64

R
R
0

N

x
E

L
s

0.00

TIME IN SECONDS

Figure E.5.1 10.5 pm Two-Stage Modified MAP MMAF OffstnError,SNR-1O,Pm-0.0

ESTIMATED OFFSET-MI~u.- POSITION (+/-) SIGMA

FDN 0.300/FMN O.000178/TMN 0.000178/OFF 87/PC 15/Run lc64

0.25-

E
R 0.00-

R
0
R

pN

-0.750

L
S

0 2 10

TIME 1IN SECONDS

Figure L5.2 10.5 lim Two-State Modified MAP MMAP Bias Error,SNRw1O,P, -0.0, at t;

B-44



ESTIMATED OFFgET-PU.,.. POSITION (+/-) SIGMA

04FDN 0.300/FM?: 0.000178/TMN 0.000178/OFF 07/PC 15/Run *c37

R 0.02
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I
x
E 06
L
S

024 6 6 10

TIME IN SECONDS

Figure E.5.3 10.5 tm IWvo-State Modified MIAP MMAF Offset ErrorSNR-10,P,1 -O.0,at ti-

FILTER VS ACTu.,i. ERROR (BIAS)

0. DN 0.300/F?4N 0.000178/TMO 0.000176/orp 87/PC 15/Run Ic37
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I
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x
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L

0.1-

TIME IN SECONDS

Figure E.5.4 10.5 prn Two-State Modified MAP MMAF Bias Errnw,SNk-1OP 1,-0.0
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ESTIMATED BIAS- .ANUS (+/-) SIGMA
FOR O.300/FMN 0.000178/TMN 0.000178/OFF 87/PC I5/Run gc37

0.10-

0. 05-

0

N

x

L

0 2 4 6 62

TIME IN4 SECONDS

Figure E.5.5 10.5 pim Two-State Modified MAP MMAF Bias Error,SNR-10,P -.0.0, at ti

ESTIMATED BIAS-.LIUS (+/-) SIGMA
FOR 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run #c37

0. 05-

0.0
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x

L
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-0.25

024 6 1 10

TIME IN SECONDS

Figure E.5.6 10.5 pin Two-State Modified MAP MMAF Bias Error,SNR-1I0,P. -0.0,at rj*
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FILTER VS ACTUAL ERROR (CM OFFSET)

VDO 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run Ic42
0.5-

0.4'

0
0.3

N

P 0.2

0.0-

0 2 4 6 6 10

TIME IN SECONDS

Figure E.5.7 10.5 pm Two-State Modified MAP MMAF Offset Error, SNR - 10, P. - 0.05

ESTIMATED OFFSET-MINL- POSITION (+/-) SIGMA

FDN 0.300/FMN U.000178/TMN 0.000178/OFF 87/PC 15/Run Ic42
0. 50"-

0.215

N 0.00. 1

0R -0.25-
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E -0.75-
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-1.00-

0 2 4 £ 6 10

TIME IN SECONDS

Figure E.5.8 10.5 lim Two-State Modified MAP MMAF Offset Error,SNR-10,P.-O.05,at t,
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ESTIMATED OFFSET-PLt... POSITION +- SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000176/OFF 07/PC 15/Hun IC42

0. 50-~

R 0. 00-

0
R

I

I

L
S

02 4 6 81

TIM4E IN SECOND~S

Figure E.5.9 10.5pjm Two-State Modified MAP MMAF Offset Effor,SNR-10,P. -0.05,at t,"

FILTER VS ACTu.,L ERROR (BIAS)
FDN 0.300/FHN 0.000178/TF.N 0.00C178/OFF 07/PC 15/gun #c42
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0
R 0.3-

P 0.2-

x

L

0.1-

0.0- I
0 2 4 60

TIý4E TN SECONDS

Figure E.5.10 10.5 lim Two-State Modified MAP MMAF Bias Error, SN~R - !0, P.~ 0.05
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ESTIMATED BIAS' ..INUS (+/-) SIGMA
0.rDN 0.300/rMN 0.000178/TMN O.Oool78/OFF ii7/PC 15/Run Ic42

P.
R

N

p

x

L
S

TIM(E IN SECONDS

Figure E.5.I 1 10.5 prnTwo-State Modified MAP MMAF Bias Ertor,SNR-1O,P.-0r.05,at ti,

ESTIMATED BIAS ±LUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0,000178/OFF 87/PC 15/IRun #c42
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R 0. -v v v- -v w
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p
I
x
E

L.

S

2 a 10

TIKIE IN SECONDS

Figure E.5.12 lO.5prn Two-State Modified MAP MMAF Bias ErtorSNR-10,P.-0.05,at tj+
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F'ILTER VS ACTUAL. rRROR (CM OFF'SET)

FDN 0.300/FmN 0.000178/TMN 0.000179/OFF 87/PC IS/Rtun IC45
0.8-

E 0.6-

R

R

I
N 0.4-

x
E

L 02
S

711

TIME IN SECONDS

Figure E.5.13 10.5pgm Two-State Modified MAP MMAF Offset Error, SNR -10, P. -0.30

ESTIMATED OF'FSET-MINL- POSITION (+1-) SIGMA
FIDN O,300/FMN 0.000178/TMN 0.000178/OFF 97/PC 15/Run lc45

R 0.5-

0.0

R

02.

0 1
TIEINEOD
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ESTIMATED OFFSET-PLb. POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run *c450.5-
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R -05-
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x
E
L
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2 4 6 1 10

TIME IN SECONDS

Figure E.5.15 10.5pm Two-State Modified MAP MMAF Offset Enxor,SNR-IO.P., -030,at +

FILTER VS ACTu..L ERROR (BIAS)
FDN 0.300/rNN 0.000176/TMN 0.000178/OFF 87/PC 15/Run Ic45
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04-
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p 0 .

I
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x

L

V2 4 6 6 10

TIME :N SECONDS

Figure E.5.16 10.Sm Two-Statc Modifed MAP MMAF Bias Enw, SNR - 10, P. - 0.30
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ESTIMATED BIAS .. NUS (+/-) SIGMA

FD11 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run Ic45
0 iO-

0. 05-

R
0
R

N

p
I
x

L
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-0.25-

0 2 4 6 a 10

TIME IN SECONDS

Figure E.5.17 10.5pim Two-State Modified MAP MMAF Bias Error,SNR-10,P.-O.30, at t,"

ESTIMATED BIAS-.LUS (+/-) SIGMA

FDN O.300/FMN 0O000178/TMN 0.000178/OFF 87/PC 15/Run #c45
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R _0.200--
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01-0
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0 2 4 6 S 10
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Figure E.5.18 1O.5pm Two-State Modified MAP MMAF Bias Error.SNR-IO,P,. -0.30,at tj'+
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FILTER VS ACTUAL. ERROR (CM OFFSET)
I'DN 0.300/FMN 0,000178/TMN 0.000178/OFW 87/PC 15/Run *c37

R

0

L

S

TIME IN SECONDS

Figure E.6.1 10.5 p~m Two-State Modiified MAP MMAF Offset ]Effor,SNR=4,Pm =0.0

ESTIMATED OFFSET-.'AIN- POSITION (+/-) SIGMA
0. o DN 0.300/PMN 0 000178/'ýj4N 0.000176/OFF 87/PC 15 /Run lc37

E 0.0059

0

N

I

L

S

-1.10

TIME IN SECONDS

Figure E.6.2 10.5 jim Two-Sutze Modified MAP MMAF Offset Error,SNRmu4,P, r-0.0, at t;
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ESTIMATED OFFSET-PLLý POSITION (/)SIGMA

0.5FDN 0.300/FMN O.000178/TMN 0.0O0178/OFF' 87/PC 15/Run AC64

0.00-

R

0
R

L

0S 41

TIME IN SECONDS

Figure E.6.3 10.5 ltim Two-State Modified MAP MMAF Offset Error,SNR-4,P8, -0.0,at ti,

FILTER VS ACTu.,i, ERROR (BIAS)

FDN 0.300/FMN O.000178/TMN 0.000170/OFF 87/PC 15/Run jc64
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p 0.2-
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TIME IN SECONDS

Figure E.6.4 10.5 pim Two-State Modified MAP MMAF Bias Errar,SNR-4,P. -0).0

E-55



ESTIMATED BIAS-..INUS (+/-) SIGMA
FDN 0.300/FMN 0,000178/TMN 0.000178/OFF 07/PC 15/Run Ic64
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Figure E.6.5 10.5 Km Two-State Modified MAP MMAF Bias Error,SNR-4,P, -0.0, at t"

ESTIMATED BIAS-.LUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0,000178/OFF 07/PC 15/Run Ic64

0.10
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V \0.05
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I
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-0.20

I-02

0 2 4 6 S 10

TIME IN SECONDS

Figure E.6.6 10.5 p.m Two-State Modified MAP MMAF Bias Error,SNR-4,P, -0.0,at t,"
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FILTER VS ACTUAL 8RROR (CM OFFSET)
FDN 0.300/FMN 0.000178/TMN 0.000179/OFF 67/PC 15/Run 1c69

0.5-

04-
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0.3-

I

x
E
L
S

0.1-

0.0 I
02 4 6 110

TIME IN SECONDS

Figure E.6.7 10.5 pmr Two-State Modified MAP MMAF Offset Error, SNR - 4, P. - 0.05

ESTIMATED OFFSET-MINL- POSITION (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run lc69
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Figure E.6.8 10.5 pm Two-State Modified MAP MMAF Offset ErrorSNR-4,P,, -O.05,at ti
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ESTIMATED OFFSET-PLU. POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 1c69

0.25-

X 0s -

L

S

-0.75-

2 4 6 B 10

TIME IN SECONDS

Figure E.6.9 IO.5p±m Two-State Modified MAP MMAF Offset Efror,SNR-4,P.' -. 05,at tl4

FILTER VS ACTt,...,. ERROR (BIAS)

FDN 0.300/PMN 0.000178/TMN 0 000178/OFF 87/PC 15,/Run #c69
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P 0.2-

x
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L

S

0 2 4 6 10

TIME IN SECONDS

Figure E.6.10 10.5 gm Two-State Modified MAP MMAF Bias Error, SNR 4, P, - 0.05
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ESTIMATED BIAS- ..LNUS (*/)SIGMA

0. FN 0.300/FMN 0,000178/TMN 0.000178/OFF 87/PC 15/Run Ic69

E

I

E
L

TIME IN SECONDS

Figure E.6.1 1 10.5 imn Two-State Modified MAP MMAF Bias Error,SNR-4,P1 .O..05,at t1,

ESTIMATED BIAS- .LUS (+/-) SIGMA
FDN 0.300/E'IIN 0.000178/TMM 0.000178/OFV 87/PC 15/Run #c69
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0 a 4 6 a 10

TIME IN SECONDS

Figure E.6.12 1O.5lim Two-State Modified MAP MMAF Bias Erroit,SNR-4,P.-O.05,at fl*
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FILTER VS ACTUAL ERROR (CM OFFSET)

FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 67/PC 15/Run lc72
0.,

E 0.6-

R
R
0
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I

P

x
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L 0.2-

S

0 2 4 6 10

TIME IN SECONDS

Figure E.6.13 10.5gm Two-State Modified MAP MMAF Offset Error, SNR - 4, P, - 0.30

ESTIMATED OFFSET-MINu- POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run 4c72

0
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E
L
S

0 4 1 10

TIME IN SECONDS

Figure E.6.14 10.5ýim Two-State Modified TIA.P MMAF Offset Error,SNR-4,P. -0.30, at t,"
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ESTIMATED oFFsET-PLL. POS0.TION (/)SIGMA

FDN 0.300/FMN 0.000176/TMN 0.000178/OFF 87/PC IS/Run lc72
0. 5-~

0.0-' AAkA.i AAAAAA

R
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L

S

-2.0-

0 2 4 6 a 10

TIME IN SECONDS

Figure E.6.15 1O.51iu Two-State Modified MAP MMAF Offset Effor,SNR-4,P, m-0.30,at il+

FILTER VS ACTL,..iL ERROR (BIAS)
F'DN O.300/'FMN 0.000176/TMN 0.000178/OFV 87/PC 15/Run Ac72
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Figure E.6.16 10.5gim Two-State Modified MAP MMAF Bias Error, SNR 4, P., 0.30
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ESTIMATED BIAS- ..INUS (+/-) SIGMA

0 0FDN O.:'OO/PMNl (.000178/TMN 0.000178/OFF 87/PC 15/Run fc72
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Figure E.6.17 10.5lpm Two-State Modified MAP MMAF Bias Emrr,SNR-4,P, -0.30, at t1.

ESTIMATED BIAS-. bUS (+/-) SIGMA
FDN 0. 300/E'MN 0. 000178/TMN 0. 00O178/0FF 87/PC 15/Run #c72
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Figure E.6. 18 10.5pim Two-State Modified MAP MMAF Bias Error,SNR-4,Pa, -d6.30,at ii
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This Appendix contains the error plots of the two-state center-of-mass Modified MAP

MMAF, wherein the iow-energy speckle return is continuously received when the hardbody-

induced Doppler return is indetectable. The Appendix is divided into sub-appendices that

correspond to different values of low-energy laser wavelength and SNR. Each wavelength with

a given SNR, is further separated into three values of Probability-of-Miss, Po. hlle plots show

the error relatiorislip, in error mean ±1 standard deviation values (in pixels), of the true errors

between the filter estimated and true offset distance from the intensity centroid to the hardbody

center-of-mass, and the true errors between the filter's estimate and the true bias caused by the

plume's speckle reflectance. This appendix is divided into the following sub-appendices:

Sub-Appendix Category

F.1 0.53 gm Wavelength, SNR = 10

F.2 0.53 lim Wavelength, SNR -- 4

F.3 2.01 gtm Wavelength, SNR = 10

F.4 2.01 ptm Wavelength. SNR = 4

F.5 10.5 ptm Wavelength, SNR = 10

F.6 10.5 gtm Wavelength, SNR = 4

F-2



Two-State.Center-o-kfas4

at SN]? /0

F- 3



FILTER VS ACTUA_ ERROR (CM OFFSET)
FDN 0.30U/FMN O.000178/TMN 0.000178/01O B7/IC 15/Run Icrol

0 4-
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R
0
R 0.3
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p 0.2-

E _I
L S 0.1-10 
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TIME IN SECONDS

Figure F. 1.1 0.53 pi Two-State Modified MAP MMAF Offset Error,SNR-10,P,... )0

ESTIMATED OFFSET-MIN_ý POSITION (+/-) SIGMA
FDN 0, 300/FMN 0.000178/TMN 0.000178/OFF 97/PC 15/Run #cr0l

0.4-

E 0 .2 ,-

R

0
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N 0.0
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x
E
L -0.2-
S

- 0.4 ------ ---- - --- ---- --

TIME IN SECONDS

Figure F.1.2 0.53 pin, Two-State Modified MAP MMAF Bias Error,SNR-i0,P.mO.0, al t"
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ESTIMATED OFFSET-PL..j POSITION (/- SIGMA
FDN 0.300,'FHN 0.000178/TMN 0.000178/OFF 87/'PC 15/Run OcrOl

0. 02-

R

0
ft

x
E
L _ .1
S

0 2 6 610

TIME IN SECONDS

Figure F. 1.3 0.53 pWm Two-State Modified MAP MMAF Off.set Error,SNR- I0,P~, -. 0,at t,

FILTER VS ACl_.%.L ERROR (BIAS)
F'DN O.300/FMN O.000178/TlMN 0.000178/OFF 87/PC 1S/flun OcrOl

0.5-

0.4-

0
ft 0.3-

N

p 0.2-
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S

0. 1

TIME IN SECONDS

Figuie F.1.4 0.53 pin Two-State Modified MAP MMAF Bias ET~or,SNR.IO,P.sm0,0
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ESTIMATED BIAS ..INUS (+/-) SIGMA
FDN O.300/FMN O.000178/TMN O.000178/0F' 67/PC 15/Run *crol

0.23-

0.2-
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x
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L

S

0 2 4 6 S 10

TIME IN SECONDS

Figure F.1.5 0.53 inn Two-State Modified MAP MMAF Bias Error,SNR-1O,P. -0O.0, at t,-

ESTIMATED BIAS ..LUS (+/-) SIGMA
FDN 0.300/114N 0.000178/TMN o.00017e/OvF 87/PC 15/Run Mar01

0. 3-

0. 2

E

0

N

x
E
L
S

0 4

TIME IN SECONDS

Figure F. 1.6 0.53 pmn Two-State Modified MAP MMAF Bias Error,SNR- 10,P., -.O.,at t,+
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FILTER VS ACTUA_ ERROR (CM OFFSET)
PDN 0.300/FMN 0.000178/TMN 0.000178/OPP 87/PC 15/Run lcr06

0.5
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S
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024 6 $ 10

TIME IN SECONDS

Figure F.1.7 0.53 nim Two-State Modified MAP MMAF Offset Error, SNR - 10, P, - 0.05

ESTIMATED OFFSET-MIN.ý POSITION (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OPF 87/PC 15/Run #cr06

0.4-
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TIME IN SECONDS

Figure F. 1.8 0.53 pIm Two-Stale Modified MAP MMAF Offset Error.FNR- lO,P, -O.05,at tj"



ESTIMATED OFFSET-PL." POSITION (+/-) SIGMA
'FDN 0.300/FMN 0.000178/TMN 0,000178/OFF 87/PC IS/Run *cr06

0.2-

E
-0.1--

R
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x
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- 0 .2 - - " 'I' . . .I'I '

0 4 6 10

TIME IN SECONfDS

Figure F. 1.9 O.531im Two-State Modified MAP MMAE Offset Error,SNR- 10,P,, -O.05,at tj+

FILTER VS ACI.,L ERROR (BIAS)
FDN 0.300/FMN 0 000178/TMN 0.000178/OFF 87/PC 15/Run lcr06
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R 0.3-

x
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p 0.2-
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0 2 4 $ 10
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Figure F.1.I0 0.53 jim Two-State Modified MAP MMAF Bias Error, SNR - 10, P., - 0.05
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ESTIMATED BIAS .,IN1JS (/)SIGMA

03FDN O.300/Ft4N O.000178/TMN 0.000178/OF.F 87/h'C IS/Run IorO6

0.2-
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-0.2-

TIME IN SECONDS

Figure F. 1.11 0.53 jim Two-State Modified MAP MMAF Bias Error,SNR-1O,P,-0.O05,at ti

ESTIMATED BIAS -LUS (+/-) SIGMA
FON 0.300/F'MN 0.000178/TMN 0.000178/OFF 67/PC 15/Run lcrO6
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0 2 4 S 10
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Figure F.I.12 0.531Lm Two-State Modified MAP MMAE Bias Error,SNRm.IO,P, -0,05,ai rj+
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FILTER VS ACTW-. ERROR (CM OFF'SET)

12FDN O.300/FMN 0.000178/TMN 0.000i78/OFP 87/PC I5/Run fczrO9

1-0-

E
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R 0.9-
0
R

I
N 0.4d
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X 0.4-
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S

TIME IN SECONDS

Figure F. 1. 13 0.531mi Two-State Modified MAP MMAF Offset Error, SNR -10, P. - 0.30

ESTIMATED OFFSET-MIN.. POSITION (+/-) SIGMA

FDN 0.300/FMN O.0003.78/TMM 0.000178/OFF 87/PC 15/Run lcrO9

0. 0- AAAAl. KI M'k"AI

E
R

I
N

P
I
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L
S

-2. 110

TIME IN SECONDS

Figure F.1. 14 0.53iwi Two-State Modified MAP MMAF Offset Error,SNR-10,P,, -0.30, at ri
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ESTIMATED OFFSET-PL... POSITION (/)SIGMA
FDN 0.300/114W O,000178/TMt4 O.000176/oFP 67/PC 15/Ihin #crO9

E
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N

p

x

L

S

o~ 2 410

TIME IN SECONDS

Figure F. 1. 15 O.53pm Two-State Modified MAP MMAE Offset Error,SNR-IO0,P, -O.3O,at tij

FILTER VS AC1I..iL ERROR (BIAS)
FDN 0.300/FMN 0,000178/TMN 0.000178/OWF 67/PC 15/Run 1crO9
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N

p 0.2-
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x

L
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TIME IN SECONDS

Figure R 1. 16 O.531im Twoý-State Modified MAP MMAF Bias Error, SNR -10, P,. -0.30
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ESTIMATED BIAS ..AINUS (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN 0,000178/OFF 87/PC 15/lRun jcrO9
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Figure F.I.17 O.53p~n Two-State Modified MAP MMAF Bias Error,SNR-10,P.,-0.30, at tj-

ESTIMATED BIAS .LUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OPF' 87/PC 15/Run #crO9
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Figure F.I.18 O.53p~m Two-State Modified MAP MMAE Bias Error,SNR-10,P, .-0.30,at riJ
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FILTER VS ACTUA. ERROR (CM OFFSET)

FDN O,300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run lcr28
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Figure F,2.1 0.53 pm Two-State Modified MAP MMAF Offset Error,SNR-4,P. -0.0

ESTIMATED OFFSET-MIN., POSITION (+/-) SIGMA

FDN 0. 300/FMN 0. 00 178/TMN 0.000178/OFF 87/PC 15/Run lcr28
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0

R

I-

I
x
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L -0.2-
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Figure F.2.2 0.53 urn Two-State Modified MAP MMAF Offset Error,SNR-4,P. -0.0, at r,



ESTIMATED OFFSET-PLý.,. POSITION (-)SIGMA
F'DN O.300/FMN 0,000178/TMN 0.000.178/OFF 87/PC 15/Run Icr28

0. 04

0.04

0 41

TIEI EOD

FigrF..0.3pTw-ttMoiidMPMAOfstEorSR4P 
00at+

FITRVNCAALERR (IS

F' .0 / M . 0 17 / M C0 1 8 O P 7 P- 1 / u c 2
0.5

0L

R

FITE VS0.3-LERO BIS

p 0.2-

E

R

8 0.31

0.02
0I 611

TIME IN SECONDS

Figure F.2.4 0.53 pim Two-State. Modified MAP MMAF Bias En-or,SNR-4,P., -0.0
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ESTIMATED BIAS .4INUS (+/-) SIGMA

FDN 0.300/FMN 0.000178/TMN O.000178/OFF 87/PC 15/Run lcr2R

0.-

E
R
R
0

I .

E

L

S
-0. 1-

-0.21 I

0 2 4 6 S 10

TIME IN SECONDS

Figure F.2.5 0.53 ILmn wo-State Modified MAP MMAF Bias Error,SNR-4,P, -0.0, at t"

ESTIMATED BIAS PLUS (+/-) SIGMA
FDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 3.5/Run Ocrr28

0.3-

E

R

0

N

p 0.0-

E

I-o-
L

S

-0 2 J - ' ' - "

0 2 4 6 0 10

TIME IN SECONDS

Figure F.2.6 0.53 pm Two-State Modified MAP MMAF Bias Erro,SNR-4,P.-0.0,at t:+
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FILTER VS ACTUA_ ERROR (CM OFFSET)

FDN 0.300,/FMN 0.000178/T'MN 0.000178/OFF 87/PC 15/Run #cr33
0.5- -

0.4.

E

0

N

P 0.2-
I

x
L
S

~ I I
0.0

4 6 10

TIME IN SECONDS

Figure F.2.7 0.53 Wim Two-State Modified MAP MMAF Offset Error, SNR - 4, P, - 0.05

ESTIMATED OFFSET-MIN.o POSITION (+/-) SIGMA

WDN 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run Icr33
04-i

E 0.21

R

0
R

P 0.0-AIAA

I •

E i
L 

-0.2-
S

-0.4 ----- -- I I I

0 2 4 1 10

TIME IN SECONDS

Figure F.2.8 0.53 pKm Two-State Modified MAP MMAF Offset Enxor,SNR-4,P. -O.05,at t(-
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ESTIMATED OFFSET-PL.j POSITION (t/-) SIGMA

'DN 0.300/FIN O.000171/TMN 0.000178/OPF 87/PC 15/Run Ncr33
0.2-

0.1-

E

R

R
0 . i
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I nj

N I TT
P -0.1.
I
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E
L

-0.2-

-0. . . . "1. ------- I .C 1 0

2 4 6 8 10

TIME IN SECONDS

Figure F.2.9 0.53iim Two-State Modified MAP MMAF Offset Error,SNR-4,P, -0.05,at t,+

FILTER VS ACT•,aL ERROR (BIAS)

FI'N 0.300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/s•un lcr33
0. 5

0.4-

E
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0
0.3-

N

P 0.2-
I

x
E
L

S

0.0-

0 1 10
TIME IN SECONDS

Figure F.2. 10 0.53 min Two-State Modified MAP MMAF Bias Error, SNR - 4, P,, - 0.05
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ESTTMATED SIAS .AiNUS (1)SIGMA
FDN O.300/FMN 0.000178/TMN 0.OOD1783/OFF 87/PC 15/Run lcr33

0.23T

R

N

x

E
L

S

0246 S 1

TIME IN SECONDS

Figure F.2.11I 0.53 lirn Two-State Modified MAP MMAF Bias Error,SNR-4,P,, m..05,at it

ESTIMATED BIAS .,LUS (+/-) SIGMA
0'DN O.30O/F'MN O,000178/1'MN 0.OOO178/OFP 87/Pc is/Run lcr33

0.3--

02-

R

0

p 0.0

x

L

S -.

-0.2- ------
0 2 4 5 0

TIME IN SECONDS

Figure F.2.12 O.53pLrm Two-State Modified MAP MMAE Bias Et-ror,SNR-4,P, -0.05,a,; it+
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FILTER VS ACTUA.. ERROR (CM OFFSET)
FDN OAOO0/FMN O.000178/TMN O.O0o178/OFF' 07/PC 15/Run 4c~r36

1.

R

0 .6

II

x( 0.4-
E

L
S

TIME IN SECONDS

Figure F.2.13 0.53 pm Two-State Modified MAP MMAF Offset Error, SNR - 4, P,- 0.30

ESTIMATED OFFSET-MINuo POSITION (+/-) SIGMA
FDN 0.300/FMN OOOO178/TMN 0.OOO17d/OFF $?/PC 15/Run Ncr36

0

R

N

p

L

S

TIME IN SECONDS

Figure F.2. 14 O.53p~m Two-State Modified MAP MMAF Offset Error,SNR-4,P.1 -0.30, at t,



ESTIMATED OFFSET-PL.~j POSITION (/)SIGMA

FDN O.300/FMN 0.OOO178/TMN 0.000178/0-1F 87/PC IS/Run lcr36

o0.

0.0

E
L
S

0 2 0---------

-0.0

E

R
S

-0 0

p 0.2-

E.

L
S

H 0.31
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ESTIMATED BIAS .,INUS (+/-) SIGMA

FDN 0.300/FMN 0.000176/1T N 0.000n7c8/OF 87/PC 15/Run Ocr36
0.0O5

E

R
R
C
R -0 05-

N

P -0.10-
I

E
L
S

046 10

TIME IN SECONDS

Figure F,2.17 0.53pLm Two-State Modified MAP MMAF Bias Error,SNR-4,P. -0.30, at t,"

ESTIMATED BIAS LUS (+/-) SIGMA

FDN 0. 300/FMN 0.000178/TMN 0.000178/OFF 87/PC 15/Run Ocr36
0.05-

0. 00 N -A "1- ,

E

R
R
0
R -0.05-

N

I

E
L
S

-0.15-

-0.20- i I

0 2 4 4 10

TIME IN SECONDS

Figure F.2.18 0.531Im Two-State Modified MAP MMAE Bias Error,SNR-4,P -0.30,at t,+

F-22



:AppendixP.SF

. .. . ... .. .. .. .

2. 201 Doppler Return: Measurements"'

. •at.SNR.o

F-23



FILTER VS ACTUAi. ERROR (CM OFFSET)
RUNCR073

0.5--

0.4-

E

R

0R

O
R 0.3-

N

P o.2•

I
x
E
L
S

0.1-

i ; 4 6 a 10

TIME IN SECONDS

Figure F.3.1 2.01 pin Two-State Modified MAP MMAF Offset Error,SNR-10,P. -0.0

ESTIMATED OFFSET-MINu- POSITION (+/-) SIGMA

RUNCR073
0.4-

E
R
R

R-.0
V , 

I
N

x
E

L
S

-0.4-

-,0.

4 6 1 10

TIME IN SECONDS

Figure F.3.2 2.01 pLm Two-State Modified MAP MMAF Offset Error,SNR-10,P. -0.0, at ti"
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ESTIMATED OFFSET-PLL-. POSITION (/- SIGMA

RUNCRO7 3

E

0

N

p
I

E
L
S

2 10

TIME IN SECONDS

Figure F.3.3 2.01 pin Two-State Modified MAP MMAF Offset Error,SNR- 10,P., -O.0,at tj+

FILTER VS ACTý...a. ERHlOR (BIAS)

RUNCRO73
0.5-

0.4-

E
R

0
R 0.3-

N

p 0.2-
I
x

L
S

0.1-

TIME IN SECONDS

Figure F.3.4 2.01 pirn Two-State Modified MAP MMAF Bias Error,SNR'-10,P. -0.0
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ESTIMATED BIAS-..INUS (/)SIGMA
HUNCR073

R

0

N

p

x

L
S

TIN4E IN SECONDS

Figure F,3.5 2.01 prn Two-State Modified MAP MMAF Bias Error,SNR-1O,P,, =0.0, at t,'

ESTIMATED BIAS-.-LUS (/)SYGMA

RUNCR07 3

E

0

N

x
E
L
S

24 6 1

TINE IN SECONDS

Figure F.3.6 2.01 ývm Two-State Modified MAP MMAF Bias Error,SNR- IdP. -0.0,at t,+
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FILTER VS ACTUAL. ERROR (CM OFFSET)
RUNCRO78

0.,5"-

0.4"

E
R
R
0

R 0.3-

N

p 0.2-

I

E

L
S

0.1

0.0 J- - - -
024 6 8 10

TIME IN SECONDS

Figure F.3.7 2.01 pm Two-State Modified MAP MMAF Offset Error, SNR 10, P,,. 0.05

ESTIMATED OFFSET-MINu- POSITION (1)SIGMA
RUNCR078

0.4-

0.2-

R

0 hiAA WhlI l 4

N

p -0.2-

x

L

-0.1-

4 6 9 10

TIME IN SECONDS

Figure F.3.8 2.01 pi.m Two-State Modified MAP MMAF Offset ErrorSNR= I0,P. -O.05,at t,"
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ESTIMATED OFFSET-PLU..o POSITION (-)SIGMA
RUNCRO 78

E

0 kA A

x

L

TIME IN SECONDS

Figure F.3.9 2.01 pm Two-State Modified MAP MMAE Offset Error,SNR- 10,P. 'O.05,at t,

FILTER VS ACTL..L. ERROR (BIAS)
RUNCP07 8

0.5-

0.4-

R
R
R
0 .3

p 0.2-

x
E

L
S

10

TIME IN SECONDS

Figure F.3.10 2.01 pmi Two-State Modified MAP MMAF Bias Error, SNR - 10. P., - 0.05
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ESTIMATED BIAS- .INIUS (/)SIGMA

0.3- -RUNCR078

02-

0
R 0.1-

E
L

046
TIME IN SECONDS

Figure F.3.11 2.01 pmn Two-State Modified MAP MMAF Bias Error,SNR I 0,P, -0 .05,at I,'

ESTIMATED BIAS- uUS +/)SIGMA

RUNCR078
0.3-

R
R
0

R .1

N

E

L

024 6 81

TIME IN SECONDS

Figure F.3.12 2.014.m Two-State Modified MAP MMAE Bias ErrorSNR-10,P. -0.O5,at t,+
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FILTER VS ACTUAL ERROR (CM OFFSET)

PUNCROI~O

0.S-

R

00

N

E
L

s

TIME IN SECONDS

Figure F.3. 13 2.01 pm Two-State Modified MAP MMAF OffSet Error, SNR -10, P., - 0.30

ESTIMATED OFFSET-MINu- POSITION (/)SIGMA

0 5-

E
R

0

x

L

6 S 10

0 TXP4z IN SECONDS
Figure F.3.14 2.01 p,, Two-Stt Mocfd M AP M MAF Offset Error,SN R- I0,P., -0.30, at 1,
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ESTIMATED OFFSET-PLLý POSITION (+/-) SIGMA
RU CR08 1

0.4-

E 0.2-

R

R
0R16

N 0.0-

I
x
E

L -0.2-

S

0 2 II

TIME IN SECONDS

Figure F.3.15 2.0 1pi Two-State Modified MAP MMAE Offset Error,SNR-10,P, -0.30,at ti+

FILTER VS AClT'U,-L EIRPOR (BIAS)

RUNCRO81
0.5-

0 4

E

0

N

R 0 2

x

E
L
S

0.1

0" "" F I .... ' • I
0 2 4 6 1 10

T04E IN SECONDS

Figure F.3.16 2.01im Two-Siae Modified MAP MMAF Bias Error, SNR - 10. P. - 0.30
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ESTIMATED BIA~S ..LNUS +/ SIGMA

RUNCRO8B1

0. 05-

E

R

0
R

N - .0

p

I

E

L

S

024 6 10

TIME IN SECONDS

Figure F.3.17 2.O1iin Two-State Modified MAP MMAF Bias Error,SNR-I0,PM -0.30, att,'

ESTIMATED BIAS-.LUS (+/-) SIGMA

E

0

p

L

S

024 10

TINE IN SECONDS

Figure F.3.18 2.01 pn Two-State Modified MAP MMAE Bias Error,SNR- I0,P. -O.30,at '1,
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FILTER VS ACTUAL ERROR (CM OFFSET)
RUNCRIOO

0.4-

E

0

R 0.3-

p 0.2
1

0.0

'Vrmw Tm qptANflq

Figure F.4. 1 2.01 pnir Two-State Modified MAP MMAF Offset Error,SNR-4,Pm, -0.0

ESTIMATED OFFSET-MINUS PO~SITCION (1)SIGMA
RUNCR 100

0.4-

0

N

p

L

0 24 6 1

TIME IN SECONDS

Figure F.4.2 2.01 pm, Two-State Modilied MAP MMAF Offset Error,SNR-4,P, -0.0, at t,
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ESTIMATED OFFSET-PLUS POSITION (1)SIGMA
RUNCR100

0

N

L

02 4 a61

-TIME IN SE~CONDS

Figure F.4.3 2,01 pmu Two-State Modified MAP MMAF Offset Iityor,SNR-4,P1, -0.0,at t,+

FILTER VS ACTUAL ERROR (BIAS)
RUNCR100

0. 5-

0.4-

E
Rt
R
0

R 0.3-

N

p 0.2-

x
E

S
0.1-

0 2 TYMC N SECONDS

Figure FAA. 2.01 pmn Two-State Modified MAP M4MAF Bias Em-r,SNR-4,P. -0,0
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ESTIMATED BIAS-MINUS (-)SIGMA
______________RUNCRIOO

0.3-

0.2-

E
R

0
R 0.1-

N

p 0.0-M NMýp

I

x
E

L

S

-0 .2--

0 2 4 6S10

TIME IN SECONDS

Figure F.4.5 2.01 pim Two-State Modified MAP MMAF Bias Error,SNRa-4,P. -.0.0, arttf

ESTIMATED BIAS-PLUS (1)SIGMA
RUNCR100

0.2-

E

R

0

R 0.1-

I

I

x

L

S

0 1 10

TIME IN SECONDS

Figure F.4.6 2.01 pm Two-State Modified MAP MMAF Bias Enor,SNR'"4,P1 . 4).0,at t, +
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FILTER VS ACTUAL ERROR (CM OFFSET)
RUNCR105

0.4-

E
R
R
0

R 0,3-

I
N

P 0.2
I
x
E
L

0.1-

0 .0 '" 'I' . .

0 4 6 10

TIME IN SECONDS

Figure F.4.7 2.01 pm Two-State Modified MAP MMAF Offset Error, SNR -4, P. -0.05

ESTIMATED OFFSET-MINUS POSITION (+/) SIGMA

RUNCR105
0.4-

0.2-

0 II

R.

1N -0.2-

N
p
I
x -0,,
E

L
s

- 0.6-

-0.8- ' 'I'I

4 6 $ 10

TIME IN SECONDS

Figure F.4.8 2:01 pim Two-Statc Modified MAP MMAF Offset En-or,SNR-4P, -0.05,at T"
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ESTIMATED OFFSET-PLUS POSITION (÷/-) SIGMA
RUNCRI05

0.2-

0.0--AAvv

E

R
R

0
R -0.2-

I
N

x

L
S

-0.6-

2 4 6 a 10

TIME IN SECONDS

Figure F.4.9 2.01 mn Two-State Modified MAP MMAE Offset Error,SNR-4,P-mO.05,at t,+

FILTER VS ACTUAL ERROR (BIAS)

RUNCR105
0. 5-

0.4-

E
R
R
0

R 0.3-

P 0.2-

x
E
L

S
0.1-

0 6 0 10

TIME IN SECONDS

Figure F.4.10 2.01 tum Two-State Modified MAP MMAF Bias Error, SNR - 4, P, - 0.05
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ESTIMATED BIAS-MINUS (/)SIGMA

0.

R

N

p

x 01

E
L

S

02 4 6 61

TIME IN SECON4DS

Figure FA.4.11 2.01 pm Two-State Modified MAP MMAF Bias Error,SNR-4,P., -0.05,at r[

ESTIMATED BIAS-PLUS (1)SIGMA
RUJNCR1 05

0. 3-

0.2-

E

N 0.0-

p

L
s

TIME IN SECONDS

Figure F.4. 12 2.0 ijm Two-State Modified MAP MMvAE Bias En-or,SNR-4,P1, -0.O5,at t,+



FILTER VS ACTUAL ERROR (CM OFFSET)
RUNCR108

E

R

0

R 0.6-

I
N

p 0.4-
1
x

L

S
0.2

0 24 6 S 10

TIME IN SECONDS

Figure P.4.13 2.01 pm Two-State Modified MAP* MMAF Offset IEr~ror,*SNR - 4, P, - 0.30

ESTIMATED OFFSET-MINUS POSITION (-)SIGMA
RUNCR 100

0.3-

R
R
0

R

N

I
x

L
S

TIM4E IN SECONDS

Figure F.4. 14 i.0OI I Two- State Mod .ified MAP .MMAF Offset Error,SNR-4,P, '-0.30, at ri*
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ESZIMATED OFFSET-PLUS POSITION (-)SIGMA
RUNCRI108

02-

R

R

-02

N

0.46

E 0.6- RN~O

-0.4

01.

0.25

E
R
R

0A

RrM 0.3-C ND

Fi NeF41 .lmToSaeMdfe A MFBa roSR 4 .,=03

p 0.2-I



ESTIMATED BIAS-MINUS (-)SIGMA

RUNCR 108
0.10-

0.05-

E

0

R

_ . 5

N

x

L
S

02 4 6 81

TIME~ IN SECONDS

Figure F.4.17 2.0Ipmi Two-State Modified MAP MMAF Bias Earor,SNR-4,P., -0.30, at t,-

ESTIMATED BIAS-PLUS (1)SIGMA
BUNCR10B

0.10-

0. 05-

0

I

N A

p

x

L

02 10

TIME IN SECONDS

Figure F.4. 18 2.01 lim Two-State Modified MAP MMAE Bias Enror,SNR-4,P,, -O0.30,at t.t
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FILTER VS ACTUAL ERROR (CM OFFSET)
RUNCR217

0.4-

E

R
R
0 

03

p 0.2

x
E
L

TIME IN SECONDS

Figure F.5. 1 10.5 pmn Two-State Modified MAP MMAF Offset Error.SNR- IO,P ._0.0

ESTIMATED OFFSET-MINUS POSITION (i/)SIGMA

RUNCR 21~7

0.25o

H 0.00-y

N

p

x

L

TIME IN SECONDS

Figure F.5.2 10.5 pm Two-State Modified MAP MMAF Bias Error,SNR-10,.P,-0.0, at ij-



ESTIMATED OFFSET-PLUS POSITION (/)SIGMA

RUNC R21 7
0.41

02-

R

0

N

-0.4-
p

x
c -0.6-

L

-0.20

-1.0-

0 2 4 1

TIME IN SECONDS

Figure F.5.3 10.5 pm Two-State Modified MAP MMAF Offset Error,SNR-IO,P, .sO.0,at t,+

FILTER VS ACTUAL ERROR (BIAS)
RUJNCR217

0.4-

E

R

R

0
B 0.3-

N

p 0.2-

x

L

S

0.1

TIME IN s E coNDS

Figure F.5.4 10.5 pm Two-State Modified MAP MMAF Bias Emwo,SNR-10,P. -0.0
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ESTIMATED BIAS-MINUS (/)SIGMA
RUNCR 217

0.05-

0

p

x

L

S

0246 810

TIME IN SECONDS

Figure F.5.5 10.5 pim Two-State Modified MAP MMAF Bias Error,SNR- 10,P, -0.0, at t,-

ESTIMATED BIAS-PLUS (-)SIGMA
RUNCR2 17

0.10-

0 5

R

0

x
-0 s

L
s

024 6 0 10

TIME IN SECONDS

Figure F.5.6 10.5 pm Two-State Modified MAP MMAF Bias Effoi-,SNR- 10,P, -O,0,at tj
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FILTER VS ACTUA"L ERROR (CM OFFSET)
RUNCR222

E

R

R

0

I 1

TrIME IN SECONDS

Figure F.5.7 10.5 lim Two-State Modified MAP MMAF Offset Error, SNR -10, P., - 0.05

ESTIMA~TED OFFESET-MINUS POSITION (/)SIGMA
RUNCR222

0.0

R

p

L
S

-1.00

TIME IN SECONDS

Figure F.5.8 10.5 Wzx Two-State Modified MAP MMAF Offset Errcr,SNR- 10,P. 'm0.05,at ti



ESTIMATED OFFSET-PLUS POSITION (-)SIGMA

RUNCR2 22

R

R

0

p
I

x
E 06
L

S

4 24 S 10

TIME IN SECONDS

Figure r-.5.9 10.5prn Two-State Modified MAP MMIAE Offset Etyor,SNR- 10,P. -0.05,at ti

FILTER VS ACTUAL ERROR (BIAS)

RUNCR~222

0.4-

E

R

R
0

R 0.3-

N

p 0.2-

x

E
L

S
0.1-

TIME IN SECONDS

Figure F.5.10 10.5 pm Two-State Modified MAP MMAF Bias Error, SNR - 10, P., 0.05
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ESTIMATED BIAS-MINUS +/ SIGMA

RUNCR2 22

R

R

0
R

N 0.0-

p

x

024 6 810

TIME IN SECONDS

Figure F.5. 11 10.5 jim rwo-State Modified MAP MMAF B ias Error,SN R-1IO0P., -0.05,at r,

ESTIMATED BIAS-PLUS (-)SIGMA
RUNCR 222

E 0.21

R

R
0

p

x

2 6 S10

TIME IN SECONDS

Figure F.5.12 IO.5pWrn Two-State Modified MAP MMAE Bias Error,SNR-I0,Pm -O.05,at tj+
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FILTER VS ACTUAL ERROR (CM OFFSET)
RUNCIR2•5

0.8-

0.6-

R
R

R
0,4

N 0.4

p
I

x

L 0.2
s

0 .0 - -- • -----------------

4 6 10

TIMt IN SECONDS
Figure F.5.13 1O.5pm Two-State Modified MAP MMAF Offset Error, SNR 10, P, - 0.30

ESTIMATED OFFSET-MINUS POSITION (4/-) SIGMA

RUNCR225
0.5-

0 -1.0-

0

L
S

0 4 6 6 10

TIME IN SECONDS

Figure F.5.14 10.5.un Two-State Modified MAP MMAF Offset Error,SNR-lO,P. -0.30, at t,-
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ESTIMATED OFFSET-PLUS POSITION (1)SIGMA
RUNCR225

0.50-

0. 5

p

x .0

L
S

-1.00

0 2 46 a 10

TIME IN SECONDS

Figure F.5. 15 10.Sjin Two-State Modified MAP MMAE Offset Error,SNR-~ 10,P., -O.30,at tj

FILTER VS ACTUAL ERROR (BIAS)
RUNCR225

0.5- _______________________________________ _

0.4-

E

0
R 0 3
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x
E
L
S

0.1 V

0.0-

0 2 4 6 a 10

TIME IN SECONDlS

Figure F.5.16 10.5tim Two-State Modified MAP MMAF Bias Error, SNR - 10, P, 0.30
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ESTIMATED BIAS-MINUS (/)SIGMA
RUNCR225

0.1-

0

N

x
E

L
S

04 6 0 10

TIME IN 3ECQNDS

Figure F.5.17 1O.51un Two-State Modified MAP MMAF Bias Error,SNR-1O,P,.O.3O, at t[

ESTIMATED BIAS-PLUS (+/-) SIGMA
RIJNCR2 25

0. 1-

0.0- A\-AVA

0

R

x

L
S

-0.4-1
0 4

TIME IN SECONDS

Figure F.5.18 1O.5im Two-Statc Modified MAP MMAE Bias Error,SNR-.1O,P.amO.3O,at I,+
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The graphs contained in this appendix plot the compiled performance results of the sensitivity

analysis conducted upon the one-state Dopplet filter and Case 1 and 2 of the two-state Modified MAP

MMAF. The graphs are shown in two sets: one set presents parametric curves that give RMS errors, in

units of pixels, as a function of probability-of-miss (P,,), while the parametric curves in the second set

are functions of signal-to-noise ratio (SNR). This appendix is partitioned into two subappendices in the

following manner:

Subppendix Category

G. I RMS Errors as a function of P,

G.2 RMS Errors as a function of SNR

Each subappendix begins with the RMS errors at te, to present the performance after measurement, and

subsequently illustrates the outcome and quality, at t,', of state estimate propagation. The reader should

note the difference in the RMS axis (ordinate) scale when tranitioning from t,+ to t-.
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This appendix contains three tables that liq the results of the respective sensitivity analysis

performed on the one-state Doppler filter and on Cases 1 and 2 of the two-state Modified MAP

MMAF. The tables list the average mean errors and average standard deviations. in units of

pixels, before measurement update at t[ and after measurement update at t,+. Note that, as a result

of the output format of the Fortran-coded simulation, the data is shown with five significant

figures. In actuality, three significant figures will suffice for analyzing the data.
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Table H. 1 One-State Doppler Filter Offset Error Statistics (in Pixels)

L).,pmi _ISNR _ P.1 mean(t,') A mean(t,+)lat'la,)

0.53 10 0.0 -0.30391E-04 0. 15079E-03 0.14402E+00 0.28674E-02
.01 -0.13520E-03 0.14715E-02 0.14436E+00 0.12484E-01
.02 -0.55185E-03 0.16988E-02 0.14479E+00 0.18428E-01
.03 -0.85223E-03 0.94931E-03 0.14461E+00 0.29420E-01
.04 -0.44544E-03 0.85601E-04 0.14509E+00 0.36668E-01
.05 0.27581E-03 0.64996E-03 0.14478E+00 0.39320E-01
.10 0.44882E-03 0.50387E-03 0.14477E+00 0.70834E-01
.20 0.31482E-02 0.39645E-02 0.14495E,+00 0.11 249E+00
.30 0.30750E-02 0.32894E-02 0.14520E,+00 0.12629E+00

8 0.0 -0.13815E-04 0.16873E-03 0.14400E+00 0.32035E-02
.01 -0.12149E-03 0. 14870E-02 0.14436E+00 0.12800E-01
.02 -0.53712E-03 0.17176E-02 0.14480E+00 0.18733E-01
.03 -0.83849E-03 0.96113E-03 0.14461E+00 0.29670E-01
.04 -0.43344E-03 0.97137E-04 0.14509E+00 0.36905E-01
.05 -0.59301E-04 0.32913E-03 0.14524E+00 0.42879E-01
.10 0.45783E-03 0.50925E-03 0.14477E+00 0.70968E-01
.20 0.31588E-02 0.39750E-02 0.14496E+00 0.1 1253E+00
.30 0.30816E-02 0.32949E-02 0.14520E+00 0.12630E+00

6 0.0 0.90539E-05 0.19443E-03 0.14400E400 0.36989E-02
.01 -0. 10140E-03 0.15119E-02 0.14436E+00 0.13258E-01
.02 -0.51895E-03 0.17452E-02 0.14482E+00 0.19176E-0 1
.03 -0.81892E-03 0.97926E-03 0.14459E+00 0.30039E-01
.04 -0.41581E-03 0.11512E-03 0.14508E+00 0.37255E-01
.05 -0.33936E-04 0.34924E-03 0.14526E,+00 0.43200E-01
.10 0.46960E-03 0.51677E-03 0.14477E,+00 0.71165E-01
.20 0.31751E-02 0.39916E-02 0.14498E+00 0.11259E+00
.30 0.30933E-02 0.33013E-02 0.14520E+00 0.12631E+00

4 0.0 0.51095E-04 0.23792E-03 0.14399E+00 0.45304E-02
.01 -0.681O1E-04 0.15506E-02 0.14437E+-00 0. 14030E-01
.02 -0.48477E-03 0.17917E-02 0.14485E+00 0.19918E-0 1
.03 -0.78556E-03 0.10110E-02 0.14457E+00 0.30657E-01
.04 -0.38538E-03 0.14446E-03 0.14507E+00 0.37841E-01
.05 0.46723E-05 0.38337E-03 0.14528E+00 0.43738E-01
.10 0.49465E-03 0.53090E-03 0. 14477E+00 0.71501E-01
.20 0.31985E-02 0.40154E-02 0.14501E+00 0.1 1270E+00
.30 0.31100E-02 0.33113E-02 0.14521E+00 0.12634E+00
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SI SNRJ P 1 _ _ _ _ _ _ _ _ .... ._ _ _

1.06 10 0.0 0.10966E-03 0.3001IE-03 0.14399E+00 0.57299E-02
.01 -0.18792E-04 0.16088E-02 0.14437E+00 0.15143E-01
.02 -0.43944E-03 0.1 8588E-02 0. 14490E+00 0.20993E-01
.03 -0.73669E-03 0. 10555E-02 0. 14453E+00 0.31550E-01
.04 -0.341OOE-03 0.18836E-03 0. 14506E+00 0.38690E-01
.05 0.61238E-04 0.43743E-03 0.14532E+00 0.44521E-01
.10 0.52479E-03 0.54857E-03 0.14476E+00 0.71983E-01
.20 0.32340E-02 0.40506E-02 0.14506E+00 0.1 1285E+00
.30 0.31360E-02 0.33297E-02 0.14521E+00 0.1 2639E+00

8 0.0 0.14194E-03 0.33509E-03 0.14399E+00 0.64031E-02
.01 0.86867E-05 0.16399E-02 0.14437E+00 0.15769E-01
.02 -0.40992E-03 0,18991E-02 0.14493E+00 0.21599E-01
.03 -0.70981E-03 0.10797E-02 0.14452E+00 0.32057E-01
.04 -0.31472E-03 0.21480E-03 0.14505E+00 0.39171E-01
.05 0,95668E-04 0.46626E-03 0.14534E+00 0,44960E-01
.10 0.54414E-03 0.56194E-03 0.14476E+00 0.72260E-01
.20 0,32550E-02 0,40729E-02 0.14509E+00 0.1 1294E+00
.30 0.31499E-02 0.33371E-02 0.14522E+00 0.12642E+00

6 0.0 0.18916E-03 0.38860E-03 0.14399EW.00 0.73915E-02
.01 0.46878E-04 0.16886E-02 0.14438E+00 0.16686E-01
.02 -0.37135E-03 0.19551E-02 0.14496E+00 0.22486E-01
.03 -0.67082E-03 0.11159E-02 0.14449E+00 0.32798E-01
.04 -0.27818E-03 0.25151E-03 0.14504E+00 0.39875E-01
.05 0.13868E-03 0.50515E-03 0.14553E+00 0.45659E-01
.10 0.57420E-03 0.58121E-03 0.14476E+00 0,72665E-01
.20 0.32855E-02 0.41035E-02 0.14513E+00 0.11308E+00
.30 0.31693E-02 0.33490E-02 0.14523E+00 0.12646E+00

4 0.0 0.27054E-03 0.47438E-03 0,14399E+00 0.90476E-02
.01 0.11 542E-03 0.17660E-02 0.14439E+00 0.18225E-01
.02 -0.30594E-03 0.20457E-02 0.14503E+00 0,23970E-01
.03 -0.60589E-03 0.1 1753E-02 0.14445E+00 0,34044E-01
.04 -0,21550E-03 0.30985E-03 0.14502E+00 0.41059E-01
.05 0.21941E-03 0.58013E-03 0. 14543E+00 0.46695E-01
.10 0.61749E-03 0.609155E-03 0.14476E+00 0.73352E-01
.20 0.33364E-02 0.41543E-02 0,14521EI400 0.11332E+00
.30 0.32044E-02 0.33708E-02 0.14525E3+00 0.12655E+00
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,pm SNR P. mean(('

2.01 10 0.0 0.36007E-03 0.56858E-03 0.14399E+00 0.10843E-01
.01 0.18846E-03 0.18493E-02 0.14439E+00 0.19898E-01
.02 -0.23438E-03 0.21442E-02 0.14510E-i+00 0.25584E-01
.03 -0.53112E-03 0.12396E-02 0.14440E+00 0.35400E-01
.04 -0.14913E-03 0.37758E-03 0.14500E+00 0.42347E-01
.05 0.30485E-03 0.65790E-03 0.14549E+00 0.47879E-01
.10 0.66959E-03 0.64378E-03 0.14476E+00 0.74103E-01
.20 0.33901E-02 0.42120E-02 0.14529E+00 0.1 1359E+400
.30 0.32428E-02 0.33960E-02 0.14528E+00 0. 12665E+00

8 0.0 0.42186E-03 0.63403E-03 0.14399E+00 0.12114E-01
.01 0.23947E-03 0.19071 E-02 0.14440E+00 0.21080E-01
.02 -0.18464E-03 0.22135E-02 0.14515E+00 0.26728E-01
.03 -0.47973E-03 0.12874E-02 0.14437E+00 0.36365E-01
.04 -0.10038E-03 0.42364E-03 0.14499E+00 0.43262E-01
.05 0.36534E-03 0.71350E-03 0.14553E+00 0.48721E-01
.10 0.70537E-03 0.66689E-03 0.14476E+00 0.74643E-01
.20 0.34280E-02 0.42508E-02 0.14535E+00 0.1 1379E+00
.30 0.32698E-02 0.34130E-02 0.14530E+00 0.12673E+00

6 0.0 0.51366E-03 0.73359E-03 0.14400E+00 0.13975E-01
.01 0.31640E-03 0. 19946E-02 0. 14442E+00 0.22816E-01
.02 -0. 10962E-03 0.23134E-02 0.14522E+00 0.28401E-01
.03 -0.40409E-03 0.13527E-02 0.14433E+00 0.37779E-01
.04 -0,26314E-04 0.49365E-03 0.14497E+00 0.44610E-01
.05 0.45673E-03 0.79641E-03 0.14559E+00 0.49958E-01
.10 0.75925E-03 0.70574E-03 0.14477E+00 0.75444E-01
.20 0.34868E-02 0.43103E-02 0.14544E+00 0.1 1409E+00
.30 0.33089E-02 0.34390E-02 0.14535E+00 0.12686E+00

4 0.0 0.66680E-03 0.89720E-03 0.14401E+00 0.17082E-01
.01 0.44352E-03 0.21331E-02 0.14444E+00 0.25713E-01
.02 0. 17095E-04 0.24826E-02 0. 14535E+00 0.31197E-01
.03 -0.27951E-03 0.14609E-02 0.14426E+00 0.40153E-01
.04 0.92439E-04 0.60917E-03 0.14495E+00 0.46868E-01
.05 0.60920E-03 0.93585E-03 0.14569E+00 0.52037E-01
.10 U.84940E-03 0.77198E-03 0.14478E+00 0.76803E-01
.20 0.35800E-02 0.44078E-02 0.14560E+00 0.1 1463E+00
.30 0.33720E-02 0.34791E-02 0.14543E+00 0.12712E+00
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4.00 10 0.0 0.88503E-03 0.1 1266E-02 0.14405E+00 0.21422E-01
.01 0.61875E-03 0.23269E-02 0.14449E+00 0.29768E-01
.02 0.19279E-03 0.27151E-02 0.14554E+00 0.351 IOE-01
.03 -0.99467E-04 0.16167E-02 0.14419E+00 0.43492E-01
.04 0.26297E-03 0.77425E-03 0. 14494E+00 0.50050E-01
.05 0.82315E-03 0.1 1343E-02 0.14585E+00 0.54963E-01
.10 0.98073E-03 0.87060E-03 0.14483E+00 0.78756E-01
.20 0.37164E-02 0.45488E-02 0.14584E+00 0,1 1545E+00
.30 0,34632E-02 0.35422E-02 0.14560E+00 0.12753E+00

8 0.0 0.10083E-02 0.12613E-02 0.14407E+00 0 23892E-01
.01 0.72330E-03 0.24355E-02 0.14453E+00 0.32077E-01
.02 0.29406E-03 0.28441E-02 0.14565E+00 0.37338E-01
.03 0.29633E-05 0.17043E-02 0,14416E+00 0.45401E-01
.04 0.36379E-03 0.86913E-03 0.14495E+00 0.51877E-01
.05 0.94634E-03 0.12471E-02 0.14594E+00 0,56644E-01
.10 0.10556E-02 0.93094E-03 0.14487E+00 0.79897E-01
.20 0.37955E-02 0.46310E-02 0.14600E+00 0.1 1595E+00
.30 0.35150E-02 0.35785E-02 0,14571E+00 0.12781,+W00

6 0.0 0.11916E-02 0.14537E-02 0.14413E+O0 0.27475E-01
.01 0.87399E-03 0.25925E-02 0.14459E+00 0.35431E-01
.02 0.44414E-03 0.30297E-02 0.14582E+00 0.40574E-01
.03 0. 15307E-03 0.18306E-02 0.14413E+00 0.48184E-01
.04 0.50964E-03 0.10079E-02 0.14496E+00 0.54545E-01
.05 0.1 1307E-02 0. 14170E-02 0. 14609E+00 0.59098E-01
.10 0.1 1680E-02 0.10248E-02 0.14494E+00 0.81588E-01
.20 0.39087E-02 0.47516E-02 0. 14624E+00 0. 1167 1E+00
.30 0.35906E-02 0.36329E-02 0.14590E+00 0.12825E+00

4 0.0 0.14979E-02 0.17753E-02 0.14427E+00 0.33380E-01
.01 0.11244E-02 0.28443E-02 0.14474E+00 0.40959E-01
.02 0.69651E-03 0.33354E-02 0.14614E+00 0.45913E-01
.03 0.40438E-03 0.20375E-02 0.14413E+00 0.52800E-01

.04 0.75705E-03 0.12430E-02 0.14504E+00 0.58981E-01

.05 0. 14392E-02 0.17069E-02 0.14636E+00 0.63183E-01

.10 0. 13569E-02 0.1 1878E-02 0.14513E+00 0.84474E-01

.20 0.41007E-02 0.49574E-02 0.14669E+00 0,1 1809E+00

.30 0.37231E-02 0.37318E-02 0.14630E+00 0.12910E+00
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[X~SNR I j |meanQ[) meanQl)

6.00 10 0.0 0.14140E-02 0.16854E-02 0.14422E+00 0.31744E-01
.01 0.10539E-02 0.27736E-02 0.14470E+-00 0.39426E-01
.02 0.62434E-03 0.32516E.02 0.14604E+00 0.44433E-01
.03 0.33358E-03 0.19815E-02 0.14413E+00 0.51516E-01
.04 0.68899E-03 0.1 1772E-02 0.14502E+00 0.57747E-01
.05 0.13532E-02 0.16268E-02 0.14628E400 0.62046E-01
.10 0.13041E-02 0.11411E-02 0.14507E+00 0.83661E-01
.20 0.40462E-02 0.48994E-02 0.14655E+00 0.1 1769E+00
.30 0.36844E-02 0.370iOE-02 0.14618E+00 0.12885E+00

8 0.0 0.16012E-02 0.18818E-02 0.14432E+00 0.35301E-01
.01 0.12085E-02 0.29272E-02 0.14481E+(00 0.42756E-01
.02 0.77850E-03 0.34334E-02 0.14625E+00 0.47651E-01
.03 0.48676E-03 0.21050E-02 0.14415E+00 0.54310E-01
.04 0.84140E-03 0.13206E-02 0.14508E+00 0.60432E-01
.05 0.15435E-02 0.18029E-02 0.14646E+00 0.64523E-01
.10 0.14205E-02 0.12423E-02 0.14521E+00 0.85A39E-01
.20 0.41661E-02 0.50278E-02 0.14685E+00 0.1 1857E+00
.30 0.37653E-02 0.37634E-02 0.14645E+00 0.12940E+00

6 0.0 0.18759E-02 0.21697E-02 0.14452E+00 0.40407E-01
.01 0.14338E-02 0.31433E-02 0.14501E+00 0.47536E-01
.02 0. 10032E-02 0.36957E-02 0.14658E+00 0.52271E-01
.03 0.71164E-03 0.22901E-02 0.14424E+00 0.58336E-01
.04 0.10666E-02 0.15307E-02 0.14524E+00 0.64322E-01
.05 0.18225E-02 0.20654E-02 0.14676E+00 0.68108E-01
.10 0.15928E-02 0.13997E-02 0.14547E+00 0.88070E-01
.20 0.43385E-02 0.52164E-02 0.14733E+00 0.11991EE+00
.30 0.38856E-02 0.38595E-02 0.14692E+00 0.13030E+00

4 0.0 0.23391E-02 0.26514E-02 0.14498E+00 0.48659E-01
.0! 0.18136E-02 0.34963E-02 0.14548E+00 0.55251E-01
.02 0. 13823E-02 0.41139E-02 0.14724E+400 0.59747E-01
.03 0.10865E-02 0.25931E-02 0.14454E+00 0.64899E-01
.04 0.14460E-02 0.18803E-02 0.14563E+00 0.70634E-01
.05 0.22959E-02 0.25115E-02 0.14735E+00 0.73976E-01
.10 0.18811E-02 0.16687E-02 0.14608E+00 0.92525E-01
.20 0.46301E-U2 0.55404E-02 0.14827E+00 0.12232FA00
.30 0.40884E-02 0.40281E-02 0.14788E+00 0.13200E+00
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8.00 10 0.0 0.19439E-02 0.22399E-02 0.14458E+00 0.41636E-01
.01 0. 14906E-02 0.31961E-02 0.14507E+00 0.48686E-01
.02 0. 10584E-02 0.37586E-02 0. 14667E+00 0,53385E-01
.03 0,76491E-03 0.23346E-02 0,14427E+00 0.5931OE-01
.04 0.1 1208E-02 0.15823E-02 0.14528E+O 0.65264E-01
.05 0.18910E-02 0.21305E-02 0,14684E+0 U.68975E-01
.10 0.16342E-02 0. 14379E-02 0. 14555E+00 0.88717E-01
.20 0,43800E-02 0.52606E-02 0.14745E+00 0.120255E+00
.30 0.39126E-02 0.38808E-02 0.14705E+00 0.13053E+0

8 0.0 0.21958E-02 0.25006E-02 0.14482E+00 0,46130E-01
.01 0.16938E-02 0.33873E-02 0.14531 E+00 0.52889E-01
.02 0.12617E-02 0.39878E-02 0.14702E+00 0.57456E-01
.03 0.969 14E-03 0,2498 1E-02 0. 14443E+00 0,62883E-01

.04 0.13278E-02 0.17709E-02 0.14549E+00 0.68726E-01

.05 0.21477E-02 0.23705E-02 0.14715E+00 0.72168E-01

.10 0. 17912E-02 0. 15842E-02 0.14587F_-00 0.91132E-01

.20 0.45390E-02 0.54383E-02 0.14796E+00 0.12155E+00

.30 0.40240E-02 0.39739E-02 0.14756E+0O 0.13145E4-00

6 0.0 0.25648E-02 0.28823E-02 0.14327E+00 0.52497E-01
.01 0.19985E-02 0.36637E-02 0.14576FA+0 0.58836E-01
.02 0. 15666E-02 0.43169E-02 0. 14762E+00 0.63227E-01
.03 0.12653E-02 0.27363E-02 0.14475E+00 0.67975E-01
.04 0.16331E-02 0.20469E-02 0.14589E+00 0.73673E-01
.05 0.25264E-02 0.27281E-02 0.14769F+00 0.76737E-01
.10 0.20209E-02 0.18025E-02 0.14645E+00 0.94681E-01
.20 0.47711 E-02 0.56986E-02 0.14879E+00 0.12354E4-00
.30 0.41878E-02 0.41133E-02 0.14842E+00 0.13289E+00

4 0.0 0.31902E-02 0.35196E-02 0.14630E+00 0.62580E-01
.01 0.25070E-02 0.41203E-02 0.14676E+00 0.68220E-01
.02 0.20732E-02 0.48462E-02 0.14882E+00 0.72366E-01
.03 0,1761 IE-02 0.31388E-02 0. 14557E+00 0.76115E-01
.04 0.21448E-02 0.25011E-02 0.14682E+00 0.81610E-01
.05 0.31614E-02 0.33303E-02 0.14878E+00 0.84081 E-01
.10 0.24046E-02 0.21738E-02 0.14772E+00 0.10060E+00
.20 0.51610E-02 0.61399E-02 0.15043E+00 0.12707E+00
.30 0.44774E-02 0,43719E-02 0.15014E+00 0.13559E+00
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%,pm SNRf Pin~ ]F canQ')'T mean(t,+) =

10.5 10 0.0 0.26115E-02 0.29295E-02 0.14534E+O0 0.53274E-01
.01 0.20358E-02 0.36996E-02 0.14583E+00 0.59557E-01
.02 0.16022E-02 0.43570E-02 0.14770E+00 0.63928E-01
.03 0.13037E-02 0.27672E-02 0.14480E+00 0.68595E-01
.04 0.16703E-02 0.20807E-02 0.14594E+00 0.74279E-01
.05 0.25731E-02 0.27723E-02 0.14776E+00 0.77298E-01
.10 0.20497E-02 0.18295E-02 0.14653E+00 0.95123E-01
.20 0,47999E-02 0.57305E-02 0.14890E+00 0. 12380E400
.30 0,42102E-02 0.41334E-02 0. 14854E+00 0.13309E+00

8 0.0 0.29443E-02 0.32696E-02 0.14586E+00 0.58720E-01
.01 0.23072E--02 0,39434E-02 0,14633E+00 0.64631E-01
.02 0.18750E-02 0.46408E-02 0.14832E+00 0.68865E-01
.03 0.15675E-02 0.29808E-02 0.14521E+00 0.72986E-01
.04 0,19443E-02 0,23233E-02 0.14642E+00 0.78556E-01
.05 0.29113E-02 0.30912E-02 0. 14833E+00 0.81255E-01
.10 0.22554E-02 0.20283E-02 0.14718E+00 0.98289E-01
.20 0.50071E-02 0.59651E-02 0.14975E+00 0.12567E+00
.30 0.43640E-02 0.42693E-02 0.14943E+00 0.13450E+00

6 0.0 0.34352E-02 0.37659E-02 0.14679E+00 0.66312E-01
.01 0,27089E-02 0.42957E-02 0. 14723E+00 0.71686E-01
.02 0.22730E-02 0.50484E-02 0.14936E+00 0.75751E-01
.03 0.19556E-02 0.32947E-02 0.14598E+00 0.79150E-01
.04 0.23476E-02 0.26767E-02 0.14727E+00 0.84579E-01
.05 0.34120E-02 0.35648E-02 0. 14928E+00 0.86833E-01
-10 0.25535E-02 0.23192E-02 0.14831E+00 0.10288E+00
.20 0.53125E-02 0.63133E-02 0.15115E•+0 0.12851E+00
.30 0.45938E-02 0.44776E-02 0.15090E+00 0.13672E+00

4 0.0 0.42651E-02 0.45982E-02 0.14876E+00 0.78044E-01
.01 0.33884E-02 0.48892E-02 0.14910E+00 0.82539E-01
.02 0.29406E-02 0.57096E-02 0.15147E+00 0.86402E-01
.03 0.26006E-02 0.38282E-02 0.14766E+00 0.88773E-01
.04 0.30215E-02 0.32559E-02 0.14908E+00 0.94020E-01
.05 0.42458E-02 0.43537E-02 0.15119E+00 0.95596E-01
.10 0.30541E-02 0.28026E-02 0.15063E+00 0.1 1036E+00
.20 0.58285E-02 0.69039E-02 0.15386E+00 0.13345E+00
.30 0.49931E-02 0.48497E-02 0.15375E+00 0.14073E+00
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Table H.2 Two-State Modified MMAF Offset Error Statistics (in Pixels) for Case 1

X,pm I SNR Pm mn meanQt,*) lo(t,) cIa(,,*)

0.53 10 0.0 0.33822E-04 -0.18678E-04 0,14-904E+00 0.31945E-02
.01 -0,39903E-03 0.32547E-03 0.14932E+00 0.12852E-01
.02 -0.89191E-03 0.43935E-03 0.14954E+00 0.18845E-01
.03 -0.12107E-02 -0.24677E-03 0.14989E+00 0.30205E-01
.04 -0.69277E-03 -0.97808E-03 0.14988E+00 0.37895E-01
.05 -0.13571E-03 -0.38331E-03 0.15000E i*00 0.44448E-01
.10 0.27966E-03 -0.35659E-03 0.15038E+00 0.72172E-01
.20 0.15996E-02 0.20021E-02 0.15063E+00 U.' i733E+00
.30 0. 13357E-02 0.16175E-02 0. 15053E+00 0.13116E+00

8 0.0 0.20463E-04 -0.32822E-04 0.14900E+00 0.35950E-02
.01 -0.42603E-03 0.29957E-03 0.14930E+00 0.13258E-01
.02 -0.91313E-03 0.41181E-03 0 14952E+00 0.19215E-01
.03 -0.12392E-02 -0.285710E-03 0.14988E+00 0.30532E-01
.04 -0.73057E-03 -0.10223E-02 0.14984E+00 0.38217E-01
.05 -0.17422E-03 -0,42909E-03 0.14993E+00 0.44729E-01
.10 0.25508E-03 -0.38802E-03 0. 15035E+00 0.72341E-01
.20 0.15679E-02 0.19653E-02 0.15057E+00 0.1 1734E+00
.30 0.13047E-02 0.15885E-02 0.15050E+00 0.13115E+00

6 0.0 -0.13042E-05 -0.52716E-04 0.14895E+00 0.41866E-02
.01 -0.47029E-03 0.25518E-03 0. 14927E+00 0.13865E-01
.02 -0.94834E-03 0.37101E-03 0.14949E+00 0.19772E-01
.03 -0. 12849E-02 -0.34905E-03 0. 14986E+00 0.31022E-01
.04 -0.81988E-03 -0.1 1022E-02 0.14972E+00 0.38708E-01
.05 -0.23537E-03 -0.49898E-03 0.14983E+00 0.45154E-01
.10 0.2163 1E-03 -0.43852E-03 0.15030E+00 0.72594E-01
.20 0.15713E-02 0.19594E-02 0.15054E+00 0.11738E+00
.30 0.12517E-02 0.15399E-02 0.15044E+00 0.13112E+00

4 0.0 -0.13042E-05 -0.52716E-04 0.14895E+00 0.41866E-02
.01 -0.47029E-03 0.25518E-03 0. 14927E+00 0.13865E-01
.02 -0.94834E-03 0.37101E-03 0. 14949E+00 0.19772E-01
.03 -0.12849E-02 -0.34905E-03 0.14986E+00 0.31022E-01
.04 -0.81988E-03 -0. 11022E-02 0.14972E+00 0.38708E-01
.05 -0.23537E-03 -0.49898E-03 0.14983E+00 0.45154E-01
.10 0.21631 E-03 -0.43852E-03 0.15030E+00 0.72594E-01
.20 0.15713E-02 0.19594E-02 0.15054E+00 0.1 1738E+00
.30 0.12517E-02 0.15399E-02 0.15044E+00 0.13112E+00
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1.06 10 0.0 -0.12165E-03 -0.16674E-03 0.14875E+00 0.66395E-02
.01 -0.69267E-03 0.31986E-04 0.14919E+00 0.16450E-01
.02 -0.11 325E-02 0.15841 E-03 0.14941 E+00 0.22165E-01
.03 -0.15199E-02 -0.66019E-03 0.14981E+00 0.33135E-01
.04 -0.1 1580E-02 -0.14696E-02 0.14945E+00 0.40857E-01
.05 -0.54761E-03 -0.84976E-03 0.14948E+00 0.47025E-01
.10 0.87363E-06 -0.71307E-03 0.15011F-00 0.73745E-01
.20 0.13787E-02 0.17158E-02 0.15025E+00 0.11748E+00
.30 0.98720E-03 0.12974E-02 0.15023EEi 00 0.13102E +00

8 0.0 -0.16676E-03 -0.21155E-03 0.14870E+00 0.74530E-02
.01 -0.77630E-03 -0.53336E-04 0. 14920E+00 0.17320E-01
.02 -0.12020E-02 0.76889E-04 0.14941 E+00 0.22982E-01
.03 -0.16080E-02 -0.77689E-03 0.149811E+00 0.33891E-01
.04 -0.12853E-02 -0.160611E-02 0.14940E+00 0.41606E-01
.05 -0.66489E-03 -0.97689E-03 0. 14940E+00 0.47680E-01
.10 -0.81334E-04 -0.81625E-03 0.15007E+00 0.74161E-01
.20 0.13067E-02 0.16249E-02 0.15017E+00 0.1 1754E+00
.30 0.81920E-03 0.11374E-02 0. 15026E+00 0.13108E+00

6 0.0 -0.23381E-03 -0.27715E-03 0.14866E+00 0.86228E-02
.01 -0.90322E-03 -0. 17720E-03 0.14924E1+00 0.18588E-01
.02 -0.13053E-02 -0.41636E-04 0. 14945E+00 0.24183E-01
.03 -0.17400E-02 -0.94986E1,03 0.14985E+00 0.34985E-01
.04 -0.14730E-02 -0.18117E-02 0.14937E+00 0.42718E-01
.05 -0.84016E-03 -0.11 702E-02 0.14932E+00 0.48658E-01
,10 -0.20527E-03 -0.97569E-03 0.15005E1+00 0.7,-795E-01
.20 0.11993E-02 0.148811E-02 0.15008E+00 0.1 1765E+00
.30 0.74260E-03 0. 10743E-02 0.15039E+00 0.13128E4+00

4 0.0 -0.34877E-03 -0.38813E-03 0.14864E+00 0.10517E-01
.01 -0.11124E-02 -0.38811IE-03 0.14940E+00 0.20652E-01
.02 -0.14801E-02 -0.24482E-03 0.14959E+00 0.26163E-01
.03 -0.19570E-02 -0.12408E-02 0.14999E4+0 0.36808E-01
.04 -0. 19036E-02 -0.2 1504E-02 0.14944E+00 0.44572E-01
.05 -0.119325E-02 -0.14852E-02 0. 14932E+00 0.50317E-01

.10 -0.41163E-03 -0.12404E-02 0.15012E+00 0.75902E-01

.20 0.10232E-02 0.12622E-02 0.15000E+00 0.1 1792E+00

.30 0.49984E-03 0.85359E-03 0.15047E+00 0.13146E+00
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Xm [SNR P _ _ ean~t,-_ mean(t|)

2.01 10 0.0 -0.45957E-03 -0.49394E-03 0.14870E+00 0.12443E-01
.01 -0. 12408E-02 -0.23504E-02 0.14747E+00 0.20557E-01
.02 -0.69788E-03 -0.20630E-02 0.14232E+00 0.26077E-01
.03 -0.10382E-02 -0.89523E-03 0.14823E+00 0.37409E-01
.04 -0.49185E-03 -0.13671E-02 0.14797E+00 0,45259E-01
.05 0.19771E-03 0.37456E-03 0.14733E+00 0.49297E-01
.10 -0.17522E-02 -0.1 2557E-02 0.15180E+00 0.76836E-01
.20 0.87361E-03 0.87518E-03 0.15014E+00 0.10868E+00
.30 0.18422E-01 0.18320E-01 0.15178E+00 0.13459E+00

8 0.0 -0.19404E-02 -0.18046E-02 0.14842E+00 0,15828E-01
.01 -0.13023E-02 -0,12213E-02 0.14933E+00 0.23181E-31
.02 -0.48919E-03 -0.87413E-03 0.14510E O+00 0.26764E-01
.03 -0.2143':E-02 -0.24676E-02 0.15656E+00 0,43858E-01
.04 -0.31918E-03 0.96144E-03 0.13921E+00 0.45021E-01
.05 0.66977E-03 -0.93208E-03 0.14631E+00 0,51428E-01
.10 -0. 19856E-02 -0.26873E-02 0.14913E+00 0.73590E-01
.20 -).89986E-03 -0.12,004E-02 0.14635E+00 0. 10328E+00
.30 0.36289E-02 0.46550E-02 0.14528E+00 0.12320E+00

6 0.0 -0.80556E-03 -0.83279E-03 0.14900E+00 0.16032E-01
.01 -0.16134E-02 -0.27107E-02 0.14786E+00 0.23985E-01
.02 -0.13049E-02 -0.26119E-02 0.14296E+00 0.29760E-01
.03 -0.13981E-02 -0.1 3508E-02 0.14854E+00 0.39936E-01
.04 -0.71835E-03 -0.15378E-02 0.14836E+00 0.47.84E-01
.05 0.13491E-03 0.27798E-03 0.14738E+00 0,51066E-01
.10 -0.23579E-02 -0.19627E-02 0.15209E+00 0.78830E-01
.20 0.28728E-03 0.31967E-03 0,151011E+00 0,11036E+00
.30 0.18175E-01 0.18112E-01 0.15210E+00 0.13519E+00

4 0.0 -0.32932E-02 -0.31397E-02 0.149711E+00 0.22819E-01
.01 -0.33141E-02 -0.32291E-02 0.15189E+00 0.32314E-01
.02 -0.98558E-03 -0,13796E-02 0.14561E+00 0.31069E-01
.03 -0.40762E-02 -0.42124E-02 0.15748E+00 0.51092E-01
.04 -0.32898E-03 0.1 1863E-02 0.13978E+00 0.46989E-01
.05 0.50116E-03 -0.1 0566E-02 0.14657E+00 0.53971E-01
.10 -0.25768E-02 -0.31636E-02 0.14960E+00 0.75933E-01
.20 -0.15304E-02 -0.22255E-02 0.14749E+00 0.10642E+00
.30 0.19264E-02 0.31013E-02 0.14733E+00 0.12655E,+00
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[X,pm ~SNR J__ ________) _____,+ ______________

4.00 10 0.0 -0.41279E-02 -0.38862E-02 0.15473E+00 0.29990E-01
.01 -0.75068E-02 -0,88362E-02 0. 15566E+00 0.43897E-01
.02 -0.28136E-02 -0.43038E-02 0. 14554E+00 0.38045E-01
.03 -0.45103E-02 -0.48597E-02 0.15271E+00 0.51099E-01
.04 -0,19585E-02 -0.26528E-02 0.15067E+00 0.54189E-01
.05 -0.24800E-02 -0.23962E-02 0.15075F+00 0.60649E-01
.10 -0.96501E-02 -0.94083E-02 0.16138_+00 0.97202E-01
.20 -0.42394E-02 -0.36662E-02 0.15759E+00 0.1 1937E10
.30 0.15810E.*-01 0.15814E-01 0.15622E+00 0.14008E+00

8 0.0 -0.70734E-02 -0.63968E-02 0.15525E+00 0.36361E-01
.01 -0.13339E-01 -0.13245E-01 0.1 6809E+i00 0,63618E-01
.02 -0.22060E-02 -0.26045E-02 0.14699E+00 0.37809E-01
.03 -0.11865E-01 -0.1 1970E-01 0.16956E+00 0.74304E-01
.04 -0.56950E-02 -0.36051E-02 0.14885E4+00 0.61371E-01
.05 -*0.466i 1E-03 -0.19872E-02 0.14847E+00 0.58303E-01
.10 -0.84825E-02 -0.92542E.02 0. 15935E+00 0.92049E-01
.20 -0.26565E-02 -0.35143E-02 0.1 5002E+00 0.1 1089E+00
.30 -0.34531E-02 -0.21258E-02 0.1 5654E+00 0.1 3690E+00

6 0.0 -0.96441E-02 -0.93674E-02 0.16439E+00 0.48518E-01
.01 -0.17947E-01 0. 19290E-01 0.17404E+00 0.76768E-01
.02 -0.83157E-02 -0.94930E-02 0.15551E1+00 0.54951E-01
.03 -0.85248E-02 -0,86749E-02 0.15928E+00 0,62879E-01
.04 -0.54886E-02 -0.61132E-02 0.1"..745E3+00 0.66854E-01
.05 -0.39164E-02 .0.38618E-02 0.15390E+00 0.66793E-01
.10 -0. i 1062E-01 -0.10897E-01 0. 16385E+00 0.10155E+0O
.20 -0,62229E-02 -0.58621E-02 0.16249E+00 0.12528E+00
.30 -0.62672E-01 -0.62648E-01 0.23357E+00 0.22484E3+00

4 0.0 -0.17437E-01 -0.17239E-01 0. 17236EW00 0.6671013-01
.01 -0.20234E-01 .0.20155E-01 0.181351E+00 0.86726E-1
.02 -0.79146E-02 -0.83046E-02 0.15773E,+00 0.57777E-01
.03 -0,28570E-01 -0.28945E-01 0.1 9790E+00 0.12153 E+00
.04 -0.1 1960E-01 -0.10371E-01 0.15959F,+00 0.80043E-01
.05 -0.64088E-02 -0.78721E-02 0.15824E+00 0.74093E-01
.10 -0.10304E-01 -0. 11038E-01 0. 162543+00 0.97456E-01
.20 -0. 15379E-01 -0.15761E-01 0.17066E+00 0.13527E+00
.30 -0.93830E-02 -0.81853E-02 0.16537E+00 0.14741 E+00
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Z~lar. SR P, ][.mean(lt:) mean(t:) I-G(tl')lt)

6,00 10 0.0 -0. 18991 E-0I -0.18695E-01 0. 17825E+00 0,71339E-01
.01 -0.22457E-01 -0.24065E-01 0.18172E+00 0.88191E-01
.02 -0.11969E-01 -0.13122E-01 0.16299E+00 0.66766E-01
.03 -0.89645E-02 -0.91385E-02 0,16028E+00 0,65344E-01
.04 -0.59487E-02 -0.68517E-02 0.15905E+00 0,70503E-01
.05 -0.40804E-02 -0.40412E-02 0.15446E+00 0,68580E-01
.10 -0.14850E-01 -0.15030E-01 0.17074E+00 0.1 1227E+00
.20 -0.11364E..01 -0.10721E-01 0.17206E+00 0.13583E+00
.30 -0.66505E-01 -0.66464E-01 0.24236E+00 0.23407E+00

8 0.0 -0.17715E.01 -0.17517E-01 0.17294E+00 0.67965E-01
.01 -0.20486E-01 -0.20401E-01 0.18211E+00 0.88101E-01
.02 -0.80249E-tu2 -0.84123E-02 0,15807E+00 0.58721E-01
.03 -0.28970E-01 -0.29344E-01 0.19888E+00 0.12307E1+00
.04 -0.12136E-01 -0.10547E-01 0.16011 E+00 0.8)034E-01
.05 -0.65162E-02 -0.79775E-02 ').15855E+00 0.74858E-01
.10 -0. 10504E-0 1 -0.11232E-01 0.16286F.+00 0.98118E-01
.20 -0.15561E1-01 -0.15953E-01 0.17130E+00 0.13609E+00
.30 -0.16863E-01 ..0.15943E-01 0.! -7764E÷-00 0.16082E+00

6 0.0 -0.20526E-01 -0.20209E-01 0.18213E+00 0.78807E-01
.01 -0.23522E-01 -0.25139E-01 0.185205+00 0.94512E-01
.02 -0.18272E-01 -0.19392E-01 0.174 62E -00 0.85790E-01
.03 -0.95590E-02 -0.97586E-02 0.16169E3+00 0.69176E-01
.04 -9.56784E-02 -0.65475E-02 0.15976E+00 0.73083E-01
.05 -0.42377E-02 -0.421811E-02 0.15527E+400 0.71452E-01
.10 -0.17393E-01 -0.17656E-01 0.17514E+00 0.11929E+00
.20 -0.24955E-01 -0.24581E-01 0.19430E+00 0.162611E+00
.30 -0.72899E-01 -0,72845E-01 0.25577E+00 0.24806E+00

4 0.0 -0.21006E-01 -0.20787E-01 0.17848E,+00 0.79447E-01
.01 -0.19591E-01 -0,19473E-01 0.18277E1+00 0.90248E-01
.02 -0.70839E-02 -0.74465E-02 0.15818E+00 0.60103E-01
.03 -0.34144E-01 -0.34523E-01 0.20889E1+00 0.13787E+00
.04 -0.14108E-01 -0.12531E-01 0.16443E+00 0.89863E-01
.05 -0.70131E-02 -0.84579E-02 0.16014E+00 0.79176E-01
.10 -0.11617E-01 -0,12315E-01 0.16438E.+00 0.10165E+300
.20 -0.18172E-01 -0.18rEO6E-01 0.17739E+00 0.14312E+00
.30 -0.18061E-01 -0.16836E-01 0.18098E+00 0.16470E4+.300
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8.00 10 0.0 -0.20609E-01 -0.20290E-01 0.18242B+00 0.79447E-01
.01 -0.23616E-01 -0.25236E-01 0.18557E+00 0,95226E-01
.02 -0.18380E-01 -0.19498E-01 0.17492B+00 0.86390E-01
.03 -0.11481E-01 -0.11707E-01 0.1648259+00 0.746763E-01
.04 -0.566221E-02 -0.652771E-02 0.159904E+00 0.73502E-01
.05 -0.42490E-02 -0.42284E-02 0.15536E+00 0.71805E-01
.10 -0.17566E-01 -0.17838E 01 0.17539E+00 0.1 1974E+00
.20 -0.25101E-01 -0.24726E-01 0.19471E+00 0.16310E+00
.30 -0.73388E-01 -0.73331E-01 0.25695E+00 0.24929E+00

8 0.0 -0.20793E-01 -0.20573E-01 0.17808E4+00 0.78392E-01
.01 -0.19472E-01 -0.19363E-01 0.18232E1+00 0.89207E-01
.02 -0.70499E-02 -0.74200E-02 0.157977u+00 0.59304E.01
.03 -0.31816E3-01 -0.32191E3-01 0.2042•E+00 0.13073Ei-00

.04 -0.14005E-01 -0.1 2424E-01 0.1 6404E+00 0.89011E-01
.05 -0.69417E-02 -0.83873E-02 0.15989E+0 0.78455!'-01
.10 -0.11430E-01 -0.12135E-01 0.16416E+00 0.10108E+00
.20 -0.18087E-01 -0.18515E-01 0.17691 E-0 0.14248E+00
.30 -0,17797E-01 -0.16584E-C 1 0.18050E+00 0.1641213(+0

6 0.0 -0.21056E-01 -0.20723E-01 0.18438'+00 0.840983E-01
.01 -0,247556-01 -0,26361E-01 0,189408+00 0.10290841

.02 -0.19094E-01 -0.20181E-01 0.17692134X) 0.90708E-01

.03 -0.12669E-01 -U. 12909E-01 0.16720E440 0.79998E-Ui

.04 -0,16848E-0 1 -0.17659E-01 0.17993E+00 0.10314E+00

.05 -0.42565E-02 -0.42459P,-02 0.156061+00 0.74557E-01

.10 -0.19193E-01 -0.19208E-01 0.17692E+00 0.12197E+00

.20 -0.26007E-01 -0.25629E-01 0.1973913+00 0.16646E+00

.30 -0.77297E-01 -0.7 722E-01 0.26601E+00 0.25866E+00

4 0.0 -0.22166E-01 -0.21940E-01 0.18215E+00 0.88066E-01
.01 -0.19984E-01 -0,19832E-01 0.18460E+00 0.94965E-01
.02 -0.10521E-01 -0.10530E-01 0,16313E+00 0.70090E-01
.03 -0.35183E-01 -0.35542E-01 0,21136E+00 0.14253E+00
.04 -0.13817E-01 -0.12274E-0 1 0.16499E+00 0.92248E-01
.05 -0.73049E-02 -0.875511E-02 0.16132EA00 0.82720E-01
.10 -0.12545E-01 -0.13215E-01 0. 16538E+00 0.10432E+00
.20 -0.30064E-01 -0.30522E-01 0.197771+00 0.1676113+00
.30 -0.19262E-01 -0,17987E-01 0,18292E+00 0.167111E+00
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5% 7,pm ISNR~ =P, =n c 7o~1 . oI (t,+)
10.5 10 0.0 -0.21071E-01 -0.20738E-01 0.18448E3+00 0,84377E-01

.01 -0.16689E-01 -0.15960E-01 0.17880E+00 0,84557E-01

.02 -0.20723E-01 -0.18649E-01 0,18634E+00 0,97423E-01

.03 -0.17178E-01 -0.16382E3-01 0.17808E+00 0.93890E-01

.04 -0.29128E--01 ..0.29388E-01 0.19848E+00 0,13033E3+00

.05 -0.26703E-01 -0.27624E-01 0.19660E3+00 0.13089E+00

.10 -0.26909E-01 -0.27012F,-01 0.19716E+00 0.14193E+00

.20 -0.26618E-01 -0.261 12E-01 0.20074E-+00 0,178411E+00

.30 -0.35108E-01 -0.34632E-01 0.21324E+00 0.20015E+00

8 0.0 -0.21158E-01 -0.20820F-01 0.18516E3+00 0.86216E-01
.01 -0.16794F.-01 -0.16067E-01 0.17943E3+00 0,86262E-01
.02 -0.20868E-01 -0.18780E-01 0,18683F,+00 0.98344E-01
.03 -0.17274E-0 1 -0.16466E-01 0.17864E+00 0.95353E-01
.04 -0.29407E-01 -0.29676E-01 0.19937E+00 0.13197E+00
.05 -0.26929E-01 -0.27724E-01 0.19748E+00 0,13254E+00
• 10 -0.27096E-01I -0.27208E-01 0. 19800E+00 0. 14329E+00
.20 -0.,46715E-91 -0.26209E-01 (",.20174E+" 0. 17919E+00

.30 -0.35362E-01 -0.34886E-01 0.21427E,+00 0.20127E+00

6 0.0 -0.21197E-01 -0.20854E3-01 0.18592E+00 0.88489E-01
.01 -0.16881E-01 -0.16156E-01 0.18017E_+00 0,88395E-01
.02 -0.20967E-01 -0.18881E-01 0.187711E+00 0.10054E+00
.03 -0.17312E-01 -0.16498E-01 0.17928E.+00 0.97158E..01
.04 -0.29710E-01 -0.29985E-01 0.20036E+00 0.13391FE+00
.05 -0.27667E-01 -0.28184E-01 0.19900E+00 0.13482E,+00
.10 -0.27264E-01 -0.27388E-01 0.19896E+00 0.14494E+00
.20 -0.312131E01 -0.30710E-01 0.21020E,+00 0.18897E.+00
.30 -0.35511E-01 -0.35046E-01 0.21542E+00 0.20250E+(Y0

4 0.0 -0.23786E-01 -0.23439E-01 0.19198"+00 0.99170E-)1
.01 -0.16894E-01 -0.16176E-01 0.18136E+00 0.92106E -01
.02 -0.21026E-01 -0.18947E-01 0.18884EBi-0 0.10353 R-00
.03 -0.17262E-01 -0.164311E-01 0.18008E,+00 0,99596E-01
.04 -0.32105E-01 -0.32382E-01 0.20460E+00 0.14033E+00
".05 -0.47341E-01 -0.47771 E-01 0.23468E+00 0.18452E1+00
.10 -0.28458E-01 -0.28269E-01 0.20094E+00 0.14764E1+00
.20 -0.30184E-01 -0.29689E-01 0.20984E+00 0.18882E+00
.30 -0.35536E-01 -0.35092E-01 0.21675E+00 0.20395E+00
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Table H.3 Two-State Modified MAP MM-AF Offset Error Statistics (in Pixels) for Case 2

-%,JIM SNR _ ~ mean(tq) rnean(t,' 1o(4i*) 10(t)

0.53 10 0.0 0.33822E-04 -0. 18678E-04 0.14904E+00 0.31945E-02
.01 -0. 10650E-03 -0,25523E-03 0. 14831 E+00 0.53584E-02
.02 0.27202E-03 0. 1151 6E-03 0.1 4269E+00 0.795 14E.02
.03 -0.43156E-03 -0. 16704E-03 0. 14806E+00 0. 13082E-01
.04 -0.37338E-03 -0. 14840E-03 0.14744E+00 0.15582E-01
.05 -0. 1 1909E-03 0.20641E-04 0. 1475013+00 0. 19875E-01
.10 -0. 11 103E-02 -0. 11407E-02 0,15249E+00 0.34393E-01
.20 0.56603E-04 0.27481E-03 0i.14906E+00 0.52569E-01
.30 -0.44194E-03 -0.32322E-03 0.14890E+00 0.72982E-01

8 0.0 -0.25316E-03 -0. 16467E-03 0. 14857E+00 0.38003E-02
.01 -0.84196E-03 -0.49823E-03 0.14893E+00 0.68223E-02
.02 0.55623E-03 0.50270E-03 0.14534E+00 0.89088E-02
.03 -0. 1 1046E-02 -0.i0615E-02 0. 15570E+00 0. 15989E-0l1
.04 0.50046E-03 0. 10022E-02 0. 1 3875E+00 0. 15377E-0 1
.05 0. 10049E-03 0,23059E-03 0.14600E+00 0.20810E-01
.10 -0.20527E-02 -0. 17224E-02 0. 14874E+00 0.33363E-01
.20 -0.23921E-02 -0.24090E-02 0. 14549E+00 0.5 141 IE-Ol

____ .30 -0. 1 1327E-02 -0.9801 8E-03 0. 14389E+00 0.73278E-01

6 0.0 -0. 13042E-05 -0.52716E.04 0.14895E+i00 0.41866E-02
.01 -0. 16196E-03 -0.31161 E-03 0. 14824E+00 0.63403E-02
.02 0. 16909E-03 0.98771E-05 0. 14257E+00 0.89130E-02
.03 -0.52300E-03 -0.26268E-03 0.14797E+00 0.13945E-01
.04 -0.43809E-03 -0.21 380E-03 0. 14728E+00 0.16331 E-O01
.05 -0.13451 E-03 0.63315SE-O5 0. 14748E+00 0.20473E-01I
.10 -0.112.692E-02 -0. 1 3008E-02 0. 1523 1 E+00 0.34963E-0 1
.20 -0. 12043E-04 0. 2069 1 E-03 0. 14901 E+00 0.52882E-0 1
.30 -0.58934E-03 -0.47167E-03 0. 14873E4-00 0.73080E-01

4 0.0 -0.42414E-03 -0.33754E-03 0. 14842E+00 0,56773E-02
.01 -0.91 824E-03 -0.5751 2E-03 0. 14887EW-0 0.82'136E-02
.02 0.43942E-03 0.38938E-03 0. 14511 E400 0.1041E-O1

.04 0.41 729E-03 0.92052E-03 0.13861 E+i00 0. 16539E-0 1

.05 0.58756E-04 0. 18977E-03 0. 14590E+00 0.21870E-01

.10 -0.21 232E-02 -0. 1797 1 E-02 0. 14866E+00 0.34161 E-0 1

.20 -0.26346E-02 -0.26733E-02 0. 1454 1 E+.00 0.521 23r,-0 I
.30 10. 13965E-02 -0. 12422E-02 0. 14380E+00 0. 7.'377',-"-0 1
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[_,Xm S__NR__ P. mean(t) mean(t1 l)

1.06 10 0.0 -0.12165E-03 -0.16674E-03 0.14875E+00 0.66395E-02
.01 -0.34912E-03 -0.49723E-03 0.14806E+00 0.88671E-02
.02 -0.14757E-03 -0.30480E-03 0.14229E+00 0. 1145 1E-01
.03 -0.80021E-03 -0.54304E-03 0.14777E+00 0.16229E-01
.04 -0.6551 5E-03 -0.43315E-03 0.14686E+00 0.18365E-01
.05 -0.1 8483E-03 -0.45245E-04 0.14741 E+O0 0.21990E-01
.10 -0.17426E-02 -0.17711E-02 0.1518.5E+00 0.36598E-01
.20 -0.31244E-03 -0.93781E-04 0.14882E+00 0.53927E-01
.30 -0.10101 E-02 -0.89500E-03 0.14832E+00 0.73559E-01

8 0.0 -0.71891E-03 -0.63264E-03 0.14827E4,00 0.84475E-02
.01 -0.97292E-03 -0.63199E-03 0.14890E+00 0.10167E-01
.02 0.23657E-03 0.18742E-03 0.14480E+00 0.12623E-01
.03 -0.15349E-02 -0. 14946E-02 0.15545E+00 0.19506E-01
.04 0.27908E-03 0.77921E-03 0.1 3844E+00 0.18273E-01

.05 -0.24617E-04 0.10774E-03 0.14578E+00 0.23441E-01

.10 -0.22549E-02 -0. 19340E-02 0.1486OE4.00 0.35410E-01
.20 -0.30417E-02 -0.31 IOOE-02 0.14541 E+00 0.5342AE-01
.30 -0.18117E-02 -0.16546E-02 0.14379E+00 0.73699E-01

6 0.0 -0.23381E-03 -0.27715E-03 0.14866E+00 0.86228E-02
.01 -0.52603E-03 -0.67178E-03 0314800E+00 0.10983E-01
.02 -0.44348E-03 -0.60041E-03 0.14216E+00 0.13609E-01
.03 -0.10518E-02 -0.79903E-03 0.14768E+00 0.18178E-01
.04 -0.86355E-03 -0.64367E-03 0,14660E+00 0.20142E-01
.05 -0.23345E-03 -0.95542E-04 0,14738E+00 0.23255E-01
.10 -0.21702E-02 -0.21957E-02 0,15154E+00 0.38118E-01
.20 -0.58375E-03 -0.36472E-03 0.14876E+00 0.54979E-01
.30 -0.13877E-02 -0.12754E-02 0.14809E+00 0.74195E-01

4 0.0 -0.11564E-02 -0.10716E-02 0.14833E+00 0.12315E-01
.01 -0.1 1066E-02 -0.76732E-03 0.14890E+00 0.12884E-01
.02 -0.72216E-04 -0.1 2204E-03 0. 14454E+00 0.15686E-01
.03 -0.20518E-02 -0.20114E-02 0.15520E+00 0.22778E-01
.04 -0.45738E-04 0.45359E-03 0.13818E+00 0.21080E-01
.05 -0.36317E-04 0.92692E-04 0.14585E+00 0.25364E-01
.10 -0.24608E-02 -,0.21501E-02 0.14866E+00 0.37276E-01
.20 -0.36507E-02 -0.37706E-02 0.14572E+00 0.55560E-01
.30 -0.24200E-02 -0.22567E-02 0.14406E+00 0.74904E-01
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X I SNR P_ _ I. mean(to) Icy(t[) lc(t,'7) ]
2.01 10 0.0 -0.45957E-03 -0.49394E-03 0.14870E+00 0. 12443E-01

.01 -0.86927E-03 -0.10156E-02 0.14819E+00 0.15144E-01
.02 -0.10440E-02 -0.12024E-02 0.14232E+00 0.17888E-01
.03 -0.18569E-02 -0.16089E-02 0. 14759E+00 0.22171E-01
.04 -0.12858E-02 -0.10667E-02 0.14644E+00 0.23761E-01
.05 -0.47967E-03 -0.34617E-03 0.14755E+00 0.26227E-01
.10 -0.30232E-02 -0.30411 E-02 0.15131 E+00 0.41426E-01
.20 -0.11 163E-02 -0.89814E-03 0.14899E+00 0.57322E-01
.30 -0,21351E-02 -0,20301E-02 0.14803E+00 0.75903E-01

8 0.0 -0,16023E-02 -0.15162E-02 0.14880E.+00 0.16390E-0I
.01 -0.12362E-02 -0.90166E-03 0.14902E+00 0.15770E-01
.02 -0.39803E-03 -0.44523E-03 0.14456E+00 0.18931E-01
.03 -0.23595E-02 -0.23216E-02 0.15544E+00 0.25607E-01
.04 -0.30890E-03 0.18956E-03 0.13828E+00 0.23902E-01
.05 -0.11 822E-03 0.95353E-05 0.14594E.+00 0.27696E-01
.10 -0.26857E-02 -0.23840E-02 0.14892E+00 0.39394E-01
.20 -0.43041E-02 -0.44778E-02 0.14644E3+00 0.58025E-01
.30 -0.30664E-02 -0.29006E-02 0.14468E+00 0.76561E-01

6 0.0 -0.80556E-03 -0.83279E-03 0.14900E+00 0.16032E-01
.01 -0.11027E-02 -0.12479E-02 0.14858E+00 0.18453E-01
.02 -0.20709E-02 -0.22280E-02 0. 14346E+00 0.22886E-01
.03 -0.23380E.02 -0.20966E-02 0.148011E+00 0.25482E-01
.04 -0.15887E-02 -0.13756E-02 0.14664E+00 0.26683E-01
.05 -0.97454E-03 -0.84237E-03 0.14828E+00 0.296111E-01
.10 -0.44613E-02 -0.44739E-02 0.15175E+00 0.46205E-01
.20 -0.18820E-02 -0.16645E-02 0.14965E+00 0.59942E-01
.30 -0.27042E-02 -0.26037E-02 0.14835E+00 0.77492E-01

4 0.0 -0.23257E-02 -0.22422E-02 0.15023E+00 0.22428E-01
.01 -0.20302E-02 -0.16982E-02 0.15005 13+00 0.21492E-01
.02 -0.10081E-02 -0.10582E-02 0.144911E+00 0.23964E-01
.03 -0.42251E-02 -0.41811 E-02 0.15707E+00 0.33630E-01
.04 -0.61153E-03 -0.11602E-03 0.13876E+00 0.27786E-01
.05 -0.4074_E-03l -0.28042E-03 0.14638E+00 0.31682E-01
.10 -0.33908E-02 -0.31044E-02 0.14984E+00 0.43704E-01
.20 -0.56010E-02 -0.58369E-02 0.14825E+00 0.62616E-01
.30 -0.43593E-02 -0.41875E-02 0.14626E+00 0.79954E-01
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, m SN_ mnean(t,) _[_ mean(t1 +) lo-) la~i+)

4.00 10 0.0 -0,41279E-02 -0.38862E-02 0.15473E+00 0.29990E-01
.01 -0.59830E-02 -0.61286E-02 0.15502E+00 0,36508E.-O1
.02 -0.52957E-02 -0.54529E-02 0,14770E+00 0.35216E-01
.03 -0.41895E-02 -0.39613E-02 0.15052E+00 0.34296E-01
.04 -0. 17352E-02 -0.15254E-02 0. 14735E+00 0.31308E-01
.05 -0.50094E-03 -0.37906E-03 0.148 10E-00 0.3201OE-01
.10 -0.58107E-02 -0.58123E-02 0. 15343E+00 0.52470E-01
.20 -0.72123E-02 -0.70033E-02 0.15876E+00 0.75646E.01
.30 -0.61799E-02 -0.60901E-02 0.15314PA-00 0.8642!E-01

8 0.0 -0.62068E-02 -0.61190E-02 0.15654E+00 0.37625E-01
.01 -0.54995E-02 -0.51770E-02 0.15612E400 0.35670E-01
.02 -0.35297E-02 -0.35883E-02 0.14899E+00 0.34865E-01
.03 -0.93655E-02 -0.90617E-02 0.16508E_+00 0.49895E-01
.04 -0.45838E-02 -0.40901E-02 0.14520E+00 0.42412E-01
.05 -0.99506E-02 -0.98315E-02 0.16234E+00 0.60585E-01
.10 -0.71797E-02 -0.69079E-02 0. 15527E+00 0.55335E-01
.20 -0.12356E-01 -0.12641 E-01 0. 15842E+00 0.79751E-01
.30 -0.15983E-01 -0.15821E-01 0. 16467E+00 0. 10702E+00

6 0.0 -0.96441E-02 -0.93674E-02 0.16439E+00 0.48518E-01
.01 -0.1 1034E-01 -0.11 182E-01 0.16472E+00 0.54421E-01
.02 -0. 17724E-01 -0.17881E-01 0. 16864E+00 0.72172E-01
.03 -0.12094E-01 -0.12150E-01 0.16260E+00 0.55640E-01
.04 -0.40456E-02 -0.38360E-02 0.15157E+00 0.40895E-01
.05 -0.52880E-03 -0.40847E-03 0. 14846E+00 0.34730E-01
.10 -0.79540E-02 -0.79509E-02 0.15667E+00 0.59464E-01
.20 -0.10057E-01 -0.98537E-02 0.16361E+00 0.84425E-01
.30 -0.71976E-02 -0.71139E-02 0.15464E+00 0.89429E-01

4 0.0 -0.13730E-01 -0.13637E-01 0.16898E+00 0.60593E-01
.01 -0.10485E-01 -0.10169E-01 0.16586E+00 0.54429E-01
.02 -0.13904E-01 -0.13976E-01 0.16875E+00 0.68328E-01
.03 -0.16962E-01 -0.16941 E-01 0. 17859E+00 0.74756E-01
.04 -0.54432E-02 -0.49586E-02 0.14783E+00 0.48900E-01
.05 -0.16567E-01 -0.16455E-01 0. 17610E+00 0.82419E-01
.10 -0.27752E-01 -0.27497E-01 0.18944E+00 0.10966E+00
.20 -0.17676E-01 -0. 17996E-01 0.16860E+00 0.93736E-01
.30 -0.28038E-01 -0.27885E-01 0.18670E+00 0. 13553E+00
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______ SNR E_ Ii mean(tj) -mean(t,') 1 o~t1)

6.00 10 0.0 -0.18991E-01 -0. 18695P,-0 1 0. 17825E+00 0.71339E-01
.01 -0.1 2860E-01 -0.130 iQE-Ol 0. 1681 7E+00 0,59308E-01I
.02 -0.1 6482E-0 1 -0. 16636E-0 1 0.1 6730E+00 0.70041 E-01
.03 -0.1 2709E-0 1 -0.1 2780EG 1 0. 16387E+00 0.58649E-0 1
.04 -0.59192E-02 -0.571 18E-02 0. 15528E+00 0.48078E-01
.05 -0.70042E-02 -0.68899E-02 0.16061 E+00 0.54230E-01I
.10 -0.89353E-02 -0.89293E-02 0. 15850E+00 0.63415E-01
.20 -0.1 2209E-01 -0.1 2306E-0 1 0.1 6806E+00 0.91 860E-01I
.30 -0.75701 E-02 -0.74936E-02 0.1 5537E+00 0.9075 1E-01I

8 0.0 -0.19705E-01 -0. 19609E-0 1 0. 17958E+00 0.78286E-01
.01 -0. 10596E-0 1 -0. 10279E-0 1 0.1 6626E+00 0.55509E-0 1
.02 -0. 14095E-0 1 -0. 141 67E-0 1 0.1 6932E+i00 0.69575E-0 1
.03 -0.1721 9E-01 -0.17201 E-01 0. 17920E+00 0.75983E-01I
.04 -0.61 135E-02 -0.56361E-02 0. 14899E+00 0.5 1629E-01
.05 -0. 16745E-01 -0.1 6635E-0 1 0. 17679E+400 0.83682E-0 1
'10 -0. 28 100E-01I -0.27846E-01 0.19036E+00 0.1 11109E+00
.20 -0.1 7927E-0 1 -0.1 8253E-0 1 0. 169 17E+i00 0.94658E-0 1
.30 -0. 28482E-0 1 -0. 283 27E-0 1 0. 18766E+I00 0. 1367 3E+00

6 0.0 -0.20526E-01 -0.20209E-01 0. 18213E+i00 0.78807E-01
.01 -0. 13266E-01 -0. 134 14E-0 1 0. 17028E4-00 0.64940E-01I
.02 -0.1 8459E-0 1 -0. 18604E-0 1 0.171 87E4-00 0.77995E-0 1
.03 -0,13614E.01 .0. 13702E.01 0. 16538E+00 0.62600E.01
.04 -0.59435E-02 -0.57368E-.02 0. 15700E+i00 0.52439E-01
.05 -0.73153E-02 -0.72023E-02 0. 16206E+00 0.58081E-01
.10 -0. 1 1475E-01 -0. 1 1474E-01 0. 16306E4-00 0.72251 E-01

.20 -0.16801E-01 -0.16918E-01 0. 17444E+00 0.10191E+00
.30 -0.39179E-01 -0.391 13E-01 0.20868E+00 0. 15935E+00

4 0.0 -0,20638E-01 -0.210535E-01 0. 18303E+00 0.86111E-01
.01 -0.141 99E-01 -0.1 3893 E-0 1 0. 17406E+00 0.70409E-0 1
.02 -0. 15840E-01 -0.1 5586E-0 1 0. 17425E+i00 0.78007E-0 1
.03 -0.25230E-01 -0.25227E-01 0.1 9283E+t00 0.9961 9E-0 1
.04 -0.63934E-02 -0.59210E-02 0.15069E+00 0.57014E-01I
.05 -0. 17370E-01 -0.1 7268E-0 1 0. 17980E+00 0.89947E-01I
.10 -0.41 346E-01 -0.41429E-01 0.21 389E+I00 0. 14834E+00
.20 -0,21440E-01 -0.21783E-01 0. 17589E+e00 0.10350E+00
.30 -0.30944E-01 -0.30804E-01 0. 19265E+00 0. 14317E+00
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X~pm- J NR I Pm meant,") ___mean(t1 +) a ;J 1it) ]
8.00 10 0.0 -0.20609E-01 -0.20290E-01 0.18242E+00 0.79447E-01

.01 -0.13289E-01 -0.13437E-01 0.17051 E+00 0.65542E-01

.02 -0. 18575E-01 -0.18717E-01 0.172155E+00 0.78608E-01

.03 -0.16971E-01 -0.17063E-01 0.17126E+00 0.72113E-01

.04 -0.59357E-02 -0.57304E-02 0.15613E+00 0.52894E-01

.05 -0.73417E-02 -0.72280E-02 0,16223E+00 0.58550E-01
.10 -0.11565E-01 -0.11563E-01 0.16323E+00 0.72722E-01
.20 -0.16894E-01 -0.17014E-0 1 0. 17470E+00 0. 10239E+00
.30 -0.39394E-01 -0.39327E-01 0.20921E+00 0. 16000E+00

8 0.0 -0.20529E-01 -0.20428E-01 0.18255E+00 0.84954E-01
.01 -0.14137E-01 -0.13829E-01 0.17373E+00 0.69453E-01
.02 -0.15734E-01 -0.15481 E-01 0,17385E+00 0.76966E-01
.03 -0.24996E-01 -0.24991E-01 0.19231E+00 0.98542E-01
.04 -0.63647E-02 -0.58918E-02 0.15042E+00 0.5611 IE-01
.05 -0.17319E-01 -0.17216E-01 0.17934E+00 0.88950E-01
.10 -0.37139E-01 -0.37220E-01 0.20794E+00 0. 13980E+00
.20 -0.21254E-01 -0.21594E-01 0. 17546E+00 0.10474E+00
.30 -0.30618E-01 -0.30474E-01 0. 19206E+00 0. 14235E+00

6 0.0 -0.21056E-01 -0.20723E-01 0.18438E.00 0.84098E-01
.01 -0.13280E-01 -0.13421E-01 0. 17209E+00 0.70102E-01
.02 -0.19363E-01 -0.19503E-01 0. 17405E+00 0.83053E-01
.03 -0.18773E-01 -0.18877E-01 0.17461EE+00 0.79101E-01
.04 -0.57616E-02 -0.55662E-02 0.15805E+00 0.56410E-01
.05 -0.74731E-02 -0.73652E-02 0, 16342E+00 0.62167E-01
.10 -0. 12261E-01 ..0.12258E-01 0.16453E+00 0.76323E-01
.20 -0.20045E-01 -0.20180E-01 0,17917E+00 0. 10968E+00
.30 -0.40754E-01 -0.40694E-01 0.21266E+00 0.16435E+00

4 0.0 -0.23238E-01 -0.23126E-01 0.18921E+00 0.97763E-01
.01 -0.14704E-01 -0.14401E-01 0.17533E+00 0.75697E-01
.02 -0.16224E-01 -0.15960E-01 0.17589E+00 0.82792E-01
.03 -0.26240E-01 -0.26259E-01 0.19491E+00 0.10442E+00
.04 -0.21180E-01 -0.20373E-01 0. 17886E+00 0.99493E-01
.05 -0.17373E-01 -0,17275E-01 0.18172E+00 0.94465E-01
.10 -0.33927E-01 -0.33695E-01 0.20385E+00 0.13256E+00
.20 -0.31354E-01 -0.31708E-01 0. 19289E+00 0.1 2838E+00
.30 -0.32397E-01 -0.32268E-01 0.19502E+00 0.14663E+00
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LX,pm [SNR j ". j __mean(t,') mean(t,÷) la(t1 ') 1l(t 1 ÷)

10.5 10 0.0 -0.21071E-01 -0.20738E-01 0.18448E+00 0.84377E-01
.01 -0.13267E-01 -0.13409E-01 0.17218E+00 0.70387E-01
.02 -0. 19407E-01 -0. 19548E-01 0.17415E+00 0.83323E-01
.03 -0.18826E-01 -0.18930E-01 0.17470E+00 0.79366E-01
.04 -0.63974E-02 -0.62002E.02 0,15939E+00 0.57878E-01
.05 -0.74758E-02 -0.73681 E-02 0. 16349E+00 0.62397E-01
.10 -0.12305E-01 -0.12303E-01 0.16461 E+00 0.76550E-0 1
.20 -0.20081E-01 -0.20217E-01 0. 17927E+00 0.10990EW00
.30 -0.40824E-01 -0.40763E-01 0.21284E+00 0.16459E+00

8 0.0 -0.20912E-01 -0.20800E-01 0.18452E+00 0.90054E-01
.01 -0. 14680E-01 -0.14378E-01 0.17501 E+00 0.74605E-01
.02 -0.16143E-01 -0.15881E-01 0.17550E+00 0.81590E-01
.03 -0.25993E-01 -0.26005E-01 0.19443E+00 0.10323E+00
.04 -0.21088E-01 -0.20283E-01 0. 17832E+00 0.98229E-01
.05 -0.17408E-01 -0.17312E-01 0.18126E+00 0.93336E-01
.10 -0.33771E-01 -0.33536E-01 0.20328E+00 0.13146E+00
.20 -0.31115E-01 -0.31468E-01 0. 19238E+00 0.1 2747E__-00
.30 -0.32037E-01 -0.31904E-01 0. 19448E+00 0. 14580E+00

6 0.0 -0.21197E-01 -0.20854E-01 0.18592E+00 0.88489E-0J
.0! -0.12930E-01 -0.13061E-01 0.17352E+00 0.74756E-01
.02 -0.20057E-01 -0.20198E-01 0. 17559E+00 0.87317E-01
.03 -0.22550E-01 -0.22299E-01 0.18066E+00 0.90690E-01
.04 -0.94444E-02 -0.92588E-02 0.16618E+00 0.70383E-01
.05 -0.74815E-02 -0.73805E-02 0.16460E+00 0.66016E-01
.10 -0.13015E-01 -0.13010E-01 0.16580E+00 0.79998E-01
.20 -0.38965E-01 -0.39117E-01 0.20522E+00 0. 14376E+00
.30 -0.41698E-01 -0.41641E-01 0.21524E+00 0.1678 1E+00

4 0.0 -0.23344E-01 -0.23223E-01 0.19079E+00 0.10238E+00
.01 -0.18769E-01 -0.18477E-01 0.18358E+00 0.90538E-01
.02 -0.16465E-01 -0.16187E-0! 0. 17719E+00 0.87058E-01
.03 -0.27113E-01 -0.27153E-01 0.19645E+00 0. 10856E+00
.04 -0.28952E-01 -0.28138E-01 0. 19392E+00 0,12448E+00
.05 -0.67151E-04 0.35709E-05 0.15185E+00 0.54615E-01
.10 -0.33658E-01 -0.33433E-01 0.20460E+00 0.13460E+00
.20 -0.32079E-01 -0.32443E-01 0. 19449E+00 0.13145E+00
.30 -0.28231E-01 -0.27757E-01 0. 18730E+00 0.13638E+00
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Vita

Capt Theodore D. Herrera was born on 11 July 1952, in Sharon, Pennsylvania. He

graduated from Brent School, Inc., Baguio City, Philippines, in 1970. He enlisted in the U.S. Air

Force in July 1973 and worked as a jet engine mechanic from 1974 - 76. In 1977, he cross-

trained into the flight simulator technician career field. Capt Iierrera was accepted into the

Airman Education Commissioning Program in 1983 and in December 1985, graduated summa

cum laude with a Bachelor of Science in Engineering from Northern Arizona University, in

Flagstaff, Arizona. Upon graduation from Officer Training School in 1986, Capt Herrera was

assigned to the Kinetic Energy Weapons SPO, Space Division, in Los Angeles Air Force Station.

In 1987, he received a cross-broadening assignment into the Civil Engineering field, where he

served as an Electrical Engineer and eventually became the project manager for the design of

military construction projects. He attended the University of the Philippines and received a

Master's of Business Management in May 1990. Capt Herrera was selected to attend the Air

Force Institute of Technology in May 1990 to pursue a Master's of Science degree in Electrical

Engineering (Guidance and Control).
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